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Introduction
Shoreline is a line where a shore and a large 
body of water interfere, like an ocean, lake or 
rivers (Misra & Balaji, 2015; Selamat et al., 
2019). Globally, it is an area of high interest 
with rich resources especially in the coastal 
area, where within 100 km of the shoreline the 
population density is higher compared to other 
living area (Small & Nicholls, 2003). The ever 
growing population in coastal areas stimulates 
the requirement for knowledge on shoreline 
changes which has become more than a topic of 
scientific interest (Moore, 2000). 

Any disturbance on coastal dynamic either 
by means of anthropogenic activity or natural 
event will eventually change the shape of the 
shoreline over time through erosion or accretion 
processes (Prasad & Kumar, 2014).  Coastal 

erosion is a worldwide phenomenon occurring 
around the globe and affecting the livelihood of 
coastal community. This causes many coastal 
countries to initiate coastal protection structure 
with the objective to stop, alter, or minimize 
the waves or currents energy going onshore 
(Fulton-Bennet & Griggs, 1986). Any structures 
constructed on a shore will eventually reshape 
the shoreline whether it is a coastal protection 
structure or non-protection structure (Vaidya et 
al., 2015).  

Studies on the influence of coastal 
protection structures are vital to determine 
whether the structures show positive or negative 
impacts towards the coastal dynamics. The 
coastal protection structures include the groyne, 
breakwater and revetment, built purposely to 
protect the shoreline. A groyne (Figure 1 (a)) is 
a structure built from the coastal shore or river 
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bank that interrupts the flow of water and limits 
the movement of sediment. 

A groyne was built with various designs and 
projections which produce mixed results based 
on the physical-affecting factors in an area as 
studied by Özölçer and Kömürcü (2006). Apart 
from that, breakwaters can also cause setback 
by introducing or worsening an erosion issue 
(Balaji et al., 2017). Usually, a breakwater was 
built in front (offshore) of an affected shoreline 
to mitigate the issue as seen in Figure 1 (b). 
However, studies on erosion caused by these 
coastal protection structures have not been well 
documented (Balaji et al., 2017). A few earlier 
studies on coastal defence structure in Malaysia 
was conducted at Carey Island, Malaysia where 
it was found that there have been changes in 
sea bed volume in the vicinity of low-crested 
breakwater (Fitri et al., 2015). There is also a 
study on breakwater design by using physical 
model of breakwater in Kuantan (Geng & 
Zhang, 2012) and submerged breakwater tested 
in laboratory experiments (Desa et al., 2016a; 
2016b). Another documented study relating to 
coastal protection structure around Malaysia is 
concerning mangrove rehabilitation (Hashim et 
al., 2010; Stanley & Lewis, 2011). 

Although studies on the multiple coastal 
protection structure in Kuala Nerus are few, 
several studies were carried out on the after-
effects of the construction of Sultan Mahmud 
Airport runway on the morphology changes in 
Kuala Nerus by Muslim et al. (2011) and Ariffin 
et al. (2016). Both studies found that erosions 
occurred in the northern part of the runway, 
where coastal protection structures were 
pursuantly constructed in 2016. Henceforth, 

a precise monitoring of shoreline delineation 
is vitally needed which requires multi-year 
shoreline maps for coastal monitoring and 
assessment in Kuala Nerus region using image 
satellite and aerial photograph as the input data. 
(Muslim et al., 2007; 2011). 

A few hindrances persist whereby satellite 
imagery data can be very expensive and 
sometimes it is almost impossible to get the 
imagery data due to safety reasons (Malarvizhi 
et al., 2015). Free satellite images from the 
United States Geological Survey (USGS) or 
Global Landcover Facility (GLCF) contain 
sufficient spectral information but it comes with 
certain limitations, where the images’ spatial 
resolutions are at low or medium.

An alternative source for imagery products 
is from the Google Earth (GE) or Unmanned 
Aerial Vehicle (UAV) device, which provides 
feeless high resolution imagery data. The high 
spatial resolution images from GE makes it 
possible to visually see the images, buildings, 
boats, etc. which shows that the GE is suitable 
for regional land use/cover mapping (Malarvizhi 
et al., 2015; Hu et al., 2013). The drawback of 
GE images is that it can only provide a low 
multispectral band data of spectral information 
which is only useful for image classification. 
Nonetheless, the decision to use GE images in 
this study is based on the finding of Mohammed 
et al. (2013) whereby the horizontal accuracy 
of GE can be precise up to 1.80 m despite its 
spatial variation. Another alternative for satellite 
imagery is the UAV, such as the Mavic Pro to 
capture aerial images that provide fine spatial 
resolution. The Mavic Pro is categorized 
as micro UAV as termed by the Unmanned 

Figure 1: a) the groyne structure of Mengabang Telipot; b) The breakwater of Tok Jembal.
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Vehicle System (UVS) international categories 
(Eisenbeiss, 2004). Therefore, the imagery 
products from the combination of GE and UAV 
can produce a reliable map with fine spatial  
resolution.

Following, the numerical simulation 
software, MIKE 21 from Danish Hydraulic 
Institute (DHI) was used to assess the direction 
and velocity of current encircling the coastal 
protection structure. This study intends to 
complement the study by enhancing the 
correlation between current movement and the 
rate of erosion within the study area by using 
numerical simulation software. Hence, the aim 
of this study is to chart the alteration of shoreline 
evolution due to construction of the coastal 
defense protection structure at Kuala Nerus.

Study Area
Located by the shore, Kuala Nerus experiences 
economical boost, mainly due to the increasing 
tourism activities. This has led to urbanization 
activities such as the expansion of the Sultan 
Mahmud airport runway and followed by the 
coastal protection structure.

The study area, as depicted in Figure 2, 
extends from the northern part of Sultan Mahmud 

Airport runaway to Mengabang Telipot for 
approximately 4 kilometres. The geographical 
coordinates extend from 600088.72 mN to 
596653.13 mN and 287914.55 mE to 289766.78 
mE. It includes the Tok Jembal, Universiti 
Malaysia Terengganu (UMT) and Mengabang 
Telipot beaches, as shown in Figure 2 (a).

As illustrated in Figure 2 (b), Terengganu 
experiences the monsoons every year with 
wind prevail from the southwesterly (southwest 
monsoon) and northeasterly (Northeast 
monsoon) which occurs during late May to 
September and November to March, respectively 
(Ariffin et al., 2016). The monsoons constitute 
strong wind waves that play an important role 
in sediment transport of the East Coast of 
Peninsular Malaysia (Philips, 1985). According 
to Ariffin et al. (2016) and Mirzaei et al. (2013), 
significant wave heights (Hs) of this region range 
from 1.0 to 2.0 m during the NEM while less than 
0.8 m during the SWM. This region experiences 
micro to meso-tidal and semi-diurnal, with a 
Mean High Water Spring (MHWS) of 3.28 m 
and Mean Low Water Spring (MLWS) of 1.12 
m (Ariffin et al., 2018a).

According to Mohd Radzi et al., (2014), the 
current velocities are higher towards the north 
of Sultan Mahmud Airport runway during the 

Figure 2 : The description of study area; a) the focus area extends from Tok Jembal until Mengabang Telipot; 
b) wind rose and; c) wave rose.
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pre-northeast monsoon season with the average 
speed more than 0.3 m/s which is sufficient to 
move sand, consequently causing erosion in the 
northern area. In 2014, a heavy storm occurred 
during the northeast monsoon resulting in the 
largest significant wave height (Hs) of ±1.5 m in 
that year (Ariffin et al., 2016). The event caused 
heavy erosion in the study area.

An erosion problem occurred since 2010 
which worsened during in 2014-2016. Hence, in 
2016, the government mandated the Department 
of Irrigation and Drainage to mitigate the 
erosion problem. As shown in Figure 3 (a), there 
were no structures built on the shoreline in 2004, 
whereas Figure 3 (b) shows that three types of 
coastal structures have been built, namely, the 
revetments, breakwaters and groyne.

Methodology
Data Collection and Processing
Five timelines were used in this study using 
images from two sources which are Google 
Earth (GE) and aerial photograph using the DJI 
Mavic Pro, a type of Unmanned Aerial Vehicle 
(UAV). The list of selected years and their image 
sources are shown in Table 1.

Table 1: List of timelines and the sources

Timeline Source

2004 GE

2013 GE

2015 GE

2016 GE + UAV

2017 GE + UAV

The 2004 timeline is the period where no 
constructions were made on the shore of Kuala 
Nerus, and natural process such as waves and 
currents are the only elements affecting the 
shore. The first human-made coastal structure 
was the extension of the Sultan Mahmud Airport 
in 2008, which is within the selected 2013 
post-construction timeline. The 2015 timeline 
selected is the year prior to the construction of 
coastal protection structure. The 2004, 2013, 
2015 and 2016 timelines were used to assess 
the shoreline evolution during pre-construction 
while the 2016 and 2017 shorelines were used 
to assess the evolution during post-construction. 
All images used sources from GE, with the 
addition of UAV images for 2016 and 2017 as 
the UAV images on the study area were collected 
since 2016.

Figure 3 : Kuala Nerus beach; a) Shoreline of 2004; b) Shoreline of 2017 with the presence of breakwaters 
and groyne; c) Vegetation cover over the shoreline and tombolo of breakwater
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About 4,500 images had been captured by 
using the Mavic Pro at the height of 160 m for the 
duration of 10-15 minutes of flight times totalling 
13 flight area points. The GPS/GLONASS 
satellite positioning system equipped on the 
Mavic Pro enabled the projection information 
to be stored on each picture (DJI, 2018). The 
sharp Mavic Pro camera with sensor resolution 
of 12.71M is adequate in acquiring fine image 
resolution.

Shoreline Digitizing
Figure 4 shows the flow chart of shoreline 
digitizing process from both UAV and GE 
images. 

These images were combined and 
overlapped through mosaic technique using 
Photoscan from Agisoft LLC (Mancini et at., 
2013). After the mosaic and georeferencing 
processes were performed on the image, the 
digitizing process was replicated for each 
timeline. This study required a digital images 
or vector image for the statistical measurement 
by DSAS to estimate the rate of changes on 
Kuala Nerus shoreline. ArcGis 10.3 was used 
to digitize the raster images of shoreline into 
vector format of shape file data.

Previously, various proxies were used by 
researchers to estimate the shoreline position in 
satellite and aerial images (Kankara et al., 2015). 
The variety of estimation include the use of 

vegetation line (Hoeke et al., 2001), line of high 
tide (Stockdon et al., 2002; Fisher and Overton, 
1994), wet-dry line (Overton et al., 1999), line 
of dune (Stafford and Langfelder, 1971), cliff 
base or top (Moore et al., 1998), toe or berm of 
the beach (Norcross et al., 2002), line of mean 
high water (MHW) (Galgano & Leatherman, 
1991) and  line of high water (Fenster & Dolan, 
1999). 

In this study, it was not possible to 
reconstruct tidal conditions at the moment the 
image products were taken. It was assumed that 
the daily water line delineation was subjected 
to a maximum uncertainty of 3 m, taking into 
account the highest of the intertidal range of 
Kuala Nerus beach.  The images were digitized 
based on the visible high water line (HWL) and 
vegetation cover along the shore, as shown in 
Figure 3. Since there was no evidence of storm 
events in any of the images used, the wave 
height effects were neglected. 

Digital Shoreline Analysis System (DSAS)
Digital Shoreline Analysis System (DSAS) 
was used as a medium to calculate the rate of 
the delineation changes of shoreline from 2004 
until 2016 (2004-2016 model) and the changes 
between 2016 and 2017 (2016-2017 model). 
The extracted shorelines from GE and Mavic 
Pro were divided into 273 transects, as shown 
in Figure 4, that were oriented perpendicular 

Figure 4: Extracting shoreline by using on-screen digitizing
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to the baseline with 20 m interval and 4 km 
length along the study area. In DSAS system, 
a baseline is needed to monitor the amount of 
shoreline changes on each transect. The baseline 
used the 2004 shoreline as reference with 170 
m of width and 4 km of length. The baseline 
will be the reference line for each transect, 
where seaward shift of shoreline is considered 
as accretion, while landward shift is considered 
as erosion.

Two statistical parameter values were used 
to measure the shoreline delineation over time. 
The End Point Rate (EPR) was calculated by 
dividing the distance of shoreline delineation by 
the time elapsed between the latest and oldest 
shoreline at each transect line. The Net Shore 
Movement (NSM) is a report that measures 
the distance between the farthest and closest 
shoreline to the baseline of each transect 
(Thieler et al., 2009). The rate change statistics 
for each transect is expressed in metres and 
presented according to the guidelines from the 
Department of Irrigation and Drainage (DID). 

As shown in Table 2, the rates were divided into 
three categories; low erosion (below than 0.99 
m/year), medium erosion (1 to 3.99 m/year) and 
high erosion (more than 4.00 m/year) (DID, 
2015).

Current Speed Pattern
Mike 21 by Danish Hydraulic Institute (DHI) 
model was used for simulation of the current 
speed. Flow Model HD FM was used in this 
study. The purpose of this assessment was to 
assess the capability of the coastal protection 
in reducing the current speed, hence, reduce the 
coastal erosion threat. Two models based on 2014 
and 2017 shorelines were used to differentiate 
the projection and velocity of current induced 
by existence and absence of coastal protection 
structure. 

Model calibration was performed as a step to 
tune the model to an acceptable tolerance result 
by using water surface elevations parameter in 
this study. The calibration was done by using the 
value suggested by the DHI (2014).

Figure 5: Transects line orientation layering on top of multiple shoreline years

Table 2: Physical parameter for coastline erosion rate

Parameter Description Erosion Rate (m/year)

Rate of shoreline retreat

Low erosion ≤ 0.99

Medium erosion 1.00 to 3.99

High erosion ≥ 4.00
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Afterward, the root mean square error 
(RMSE) and bias value between measured 
current speed from a current  profiler and 
simulated output value were calculated and 
compared in Figure 6. The validation period is 
from 29th January until 15th February of 2014.
The bias value was -0.014 m/s and RMSE value 
of 0.067. The bias value was underestimated 
throughout the time series though, the trend 
fixed soundly with the measured current speed. 
Based on previous literature in the study area, 
with 0.29 (Latiff, 2014) and 0.15 (Daud & Akhir, 
2015) of RMSE values, these provide adequate 
references for current study’s value. Thus, this 
validated the model setting and simulation for 
further analysis.

Results
Rate of Shoreline Delineation
Through DSAS measurement, the EPR and 
NSM were used as statistical measure to identify 
the rate of the delineation changes over time. 
Overall, based on Figure 7 (upper), Kuala Nerus 
shoreline maximum retreat was -11 m/year and 
-150m of net shoreline changes for the period 
between 2004 and 2016, while the accretion 
occured less than +5 m/year with net accretion 
of +94 m/year. 

The analysis of the result is discussed in the 
following paragraphs according to geographical 
aspect; Tok Jembal, UMT and Mengabang 
Telipot beaches. The second transect which 
projected the shoreline from 2016 to 2017 was 

carried out to measure the changes between these 
years as there was an advancing in shoreline 
delineation, which may be influenced by beach 
nourishment works in the area. 

Tok Jembal: Pre-construction; the highest 
erosion rate was recorded within/on this beach 
especially in the bay area with approximately 
-10 m/year and net of -150 m eroded from 2004 
until 2016. The only accretion is within the Tok 
Jembal southernmost beach with accretion less 
than +5 m/year net. Post-construction; mixed 
results were recorded within the bay of semi 
enclosed groyne (jetty groyne) at Tok Jembal. 
Erosion occurred in the middle of the bay with 
-40 m movement directly facing the opening 
between the two groynes although some 
accretion occurs within the bay. The accretion 
rate was up to 20 m a year within this area.

UMT: During pre-construction; the highest 
accretion rate is less than +5 m/year, where 
the accretion was seen on the formation of 
tombolo that naturally formed behind the face of 
breakwaters. This can be seen in the front of the 
UMT beach. Although there were formations of 
tombolo behind the breakwater, the UMT beach 
was showing significant erosion rate of -8 m/
year and -110 m of net movement of shoreline. 
During post-construction; the shore of UMT 
showed positive result, marked with the green 
line indicating positive value showing accretion 
event recorded at more than 20 m in one year. 
The statistical measurement by DSAS shows 
that the UMT shore was gaining an accretion up 
to +80m over one year of movement.

Figure 6: Comparison between modelled and measured current speed with RMSE value
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Mengabang Telipot: Pre-construction; the 
erosion rate at Mengabang Telipot shore was 
-6 m/year and -80m of net shoreline movement 
and wider area eroded as there were no coastal 
protection structures until recently. On transect 
2: the shore retreated at the rate of -50m over 
a year timeline. Based on the transect pattern, 
the northern area was having a high erosion rate 
ranging between -20 m/year to -40 m/year in 
one year.

Overall, most of the eroded areas were 
gaining positive result with accretion taking 
place from 2016 until 2017. It may be caused 
by the coastal protection structure being 
constructed in 2016.

Current Speed
Figure 8 illustrates the current moving 
northward with the speed ranging from 0.06 m/s 
to 0.20 m/s in 2014 when the coastal protection 
structure was still not built. The shore is 
perceived to receive stronger current movement 
during the period as compared to 2017 where 
the coastal protection structure was in place. 
The shoreline received less impact in 2017 since 
the incoming current had been slowed down 
and altered by the coastal protection structure, 
especially at Tok Jembal and UMT beaches. A 
current recirculation can be seen in the lee of the 
coastal protection structure. The recirculation is 
observable on the left side of the breakwater in 
front of UMT’s beach with current speed below 
0.02 m/s.

Figure 7: Upper column shows shoreline changes rate between 2004 until 2017 (pre-construction) while 
lower column shows the rate of shoreline changes between 2016 and 2017 (post-construction)
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Although the current might have slowed 
down in most area, some area still received 
high current speed as shown in Figure 8 (right) 
with two areas experienced strong movement. 
Although there was no recirculation observed, 
the current passing through the curved groyne 
of Tok Jembal directly hit the near shore area, 
causing the disappearance of tombolo features 
behind the southernmost breakwater. As for 
the groyne of Mengabang Telipot, the current 
deflected caused recirculation on the shore side.

Discussion
The trend of shoreline movements at Kuala 
Nerus has changed since the construction of 
the airport runway in 2008 (Muslim et al. 2011; 
Ariffin et al. 2016). Since then, Kuala Nerus 
beach faced a continuous shoreline retreat 
before the mitigation measures were taken by the 
authority by constructing the coastal protection 
structures along the affected area. 

Normally, the beaches of Terengganu will 
face erosion issues annually before recuperation 
process took place, returning the shore to its 
initial delineation. However, the study by 

Ariffin et al. (2016) found that the shore of 
the Kuala Nerus is not in an equilibrium state. 
This may be due to developed beach could not 
recover from post-storm conditions as quickly 
as an undeveloped beach (Hill, 2004; Quartel 
et al., 20018). In 2016, the proposed protection 
structures were constructed to combat erosion 
issues and currently there is no available local 
update concerning the changes caused by these 
structures to the beach morphology. Hence, 
this study intends to assess the impacts made 
by coastal protection structure on shoreline by 
using DSAS and current speed model. 

Digital Shoreline Analysis System
The statistical result reveals that the Kuala 
Nerus shoreline delineation has drastically 
changed from 2004 to 2016. An erosion event 
had taken place along the shore of Kuala 
Nerus, especially on UMT and Tok Jembal 
beaches. This event is related to the action of 
wave and current circulation in the vicinity of 
the protection structures with the influence of 
seasonal monsoon.

However, since 2017, the erosion has 
slowed down and accretion seems to occur 

Figure 8: Current Speed during 2014 (left) and 2017 (right)
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indicating positive result especially for coastal 
community around UMT and Tok Jembal 
beaches. This shows positive gain of coastal 
protection structure in this area, although the 
beach nourishment work in UMT beach might 
also be an influencing factor. The southernmost 
beach of UMT is the only beach to be eroded 
despite being already protected with revetment, 
which means the shoreline movement will be 
halted in this area, if the revetment endures for 
the possible incoming threats toward them such 
as storms. The north part of Mengabang Telipot 
beach and Tok Jembal are the areas that have 
significantly experienced high erosion rate. The 
high erosion rate at both sites is related to the 
current movement within this area.

Current Speed
The Terengganu current movement is influenced 
by monsoonal wind system (Dale, 1956; Wyrtki, 
1961; Akhir & Yong, 2011; Kok et al., 2015). 
Annually, the east coast of Peninsular Malaysia 
(ECPM) wind prevail from northeasterly during 
Northeast monsoon (NEM) and southwesterly 
during Southwest monsoon (SWM). Meanwhile, 
the current moves northward during NEM and 
Southward during SWM depending on the 
intensity of prevailed wind (Daud et al., 2016). 
The periodic tide also plays an important role 
in driving the current movement on EPCM as 
stated by Saadon and Camerlongo (1997).

As the current moves northward as 
predicted in the simulated model, the different 

colour tone indicates the current speed dynamic. 
The current movement is compared to two 
situations; the pre- and post-construction of the 
coastal protection structure. The comparison 
was done to examine the effects of protection 
structure on the shoreline evolution. 

Pre-construction (2004-2014): during this 
period, heavy erosion occurred at Kuala Nerus 
beach (Ariffin et al., 2018b). The direct impact 
received from the incoming current movement 
initiated the heavy erosion, resulting in loss of 
UMT research station situated on the beach as 
well as the natural view of sandy beach.

Post-construction (2017): The constructed 
structure seems to reduce the intensity of 
incoming current. However, the structures also 
caused the formation of recirculation current, 
which led to the formation of rip current which 
has the possiblity of driving sediment transport 
beyond the surf zone (Pattiaratchi et al., 2009; 
Scott et al., 2016), which in turn, limits the 
sediment supply to the shore. On north part of 
Mengabang Telipot the presence of recirculation 
current in the lee of the groyne might explain the 
heavy erosion in the area. Another re-circulation 
current is seen inside the jetty groyne with 
clockwise circulation representing an embayed 
circular rips current (Castelle et al., 2016). The 
embayed-circular rips formed in an embayed 
beaches is associated with shore erosion, 
especially with occurrence of storm event 
(Loureiro et al., 2011).  As shown in Figure 9, 
despite having revetment structure, the shore 

Figure 9: The jetty groyne of Tok Jembal facing shore erosion despite having revetment protection
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had been eroded due to the re-circulation current 
with around -20 m/year have been eroded 
between 2016 and 2017.

Meanwhile, the shoreline around the 
southernmost breakwater receives strongest 
current movement among the study areas. This 
might be due to the design of Tok Jembal groyne 
that is projecting the current direction, leading 
to the disappearance of the tombolo as shown 
in Figure 10. Despite receiving strong current 
movement, the shoreline is less threatened due 
to the armouring effect of the shore through 
revetment as shown in Figure 10. Generally, the 
coastal protection structure shows mixed results 
that have successfully stopped the erosion within 
the area, while mitigating the erosion to another 
place, unending chain of problem.

A study in Colombia by Rangel-Buitrago 
et al. (2015) reflects the importance of 
shoreline change study in this area, especially 
in this similarly dense coastal population and 
its urbanization (Ariffin et al., 2018b). The 
unanticipated impact of the extreme shoreline 
evolution on open beach is critical to be studied 
as it involves local communities. In Thailand, an 
extreme coastal erosion event affecting coastal 
communities in Nakhon Si Thammarat province, 
have compelled the community to be involved 
in designing the coastal protection to mitigate 
the problem (Saengsupavanich et al., 2009). In 
Malaysia, coastal protection management had 
engaged the coastal communities, especially the 
fishermen as they understood and experienced 
the local process of monsoon dynamics (Ariffin 
et al., 2018b). 

Many studies have proved the negative 
impact of coastal protection on shoreline. 
Studies were carried out, for example, (Williams 

et al., 2018), Percé, Canada (Bernatchez & 
Fraser, 2012), Pilio, Greece (Tsoukala et al., 
2015) and in Terengganu, Malaysia (Ariffin et 
al., 2019). The previous case studies contributed 
to best practices in designing effective coastal 
protection (Prukpitikul et al., 2018).

Furthermore, this study may be used as 
reference for future coastal development on 
sandy beaches area, especially in area influenced 
by monsoon seasons. Authorities and developers 
need to contemplate and be accommodative of 
the possibility of changes in current flow at sandy 
beach resulting from coastal area construction 
since the current can heavily reconstruct the 
face of a beachfront. As an area facing the South 
China Sea, this study discussed the impact of 
the construction of coastal structures on open 
sandy beach area. Total coastal erosion of the 
shoreline that might significantly affect the 
coastal community may be avoided, but perhaps 
at the cost of the aesthetic value of beaches.

Conclusion
In general, the erosion issues of Kuala Nerus 
shoreline have been slowed down by the 
protection structure, but some parts of the 
shore were still being eroded. Besides, the 
effectiveness of the coastal protection structures 
is questionable as the accretion in the shore 
of UMT might be the influenced by the beach 
nourishment program, although the numerical 
modelling shows a slower current movement 
indicating the possibility of accretion of shoreline. 
Although the erosion rate had slowed down over 
the year, the erosion seemed to migrate to the 
upper part of the Kuala Nerus shore, possibly 
due to the recirculation current and the presence 
of the coastal structure that acts as a buffer for 

Figure 10: Revetment on the shore of Tok Jembal, with offshore breakwater on the middle of water
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incoming longshore transport. The structure has 
turned out to be ineffective to fully mitigate the 
erosion issues. It clearly shows the importance 
of understanding the coastal dynamics and 
sediment supply along the shore. The study on 
beach morphology is crucial and has widely 
been performed. However, the information on 
cross-shore transport on monsoon coast is also 
vital, but is still limited. The transport might be 
associated with the coastal dynamic during the 
northeast and southwest monsoons.
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