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Abstract: Peat land fires have received increasing attentions as a major recurrent environmental 

problem in Indonesia, particularly across the eastern coast of Sumatera Island, where Bengkalis 

Regency is located. Although peat land fire prediction analysis has become an essential aspect of 

fire management, however, it seems that studies are still very limited in Indonesia. Therefore, this 
study objective is to develop a prediction models for peat land fire particularly in the Bengkalis 

Regency, Riau Province-Indonesia. This study was conducted based on spatial logistic regression 

method, in which that a prediction model that can provide preparation time up to 2 months before 

the beginning of peat land fire season was selected to produce a prediction map based on 

physiographic variables, peat physical characteristics variables, human activity variables, and 

climate variables. Performance of the selected peat land fire prediction model has been verified and 

validated using an independent testing subset, and the results showed are consistently reliable (Chi-

square, p <0.001; Nagelkerke R2=0.314; AUC=0.8309; Overall accuracy of correct predicted 

value=85.16%). This finding is useful to improve peat land fire management in Bengkalis Regency, 

and can also be used to help the authorities in the spatial domain to make more appropriate decisions 

related to fire prevention strategies. 

Keywords: Fire-prediction model, fire management, spatial logistic-regression method, Sumatra 

Island, Riau  

Introduction 

Nowadays, peat land fires have received considerable 

attentions since it is also proven to trigger other 

environmental and health related issues, such as 

increasing threat to endangered flora and fauna due to 

significant habitat loss (Curran et al., 2004; Barlow & 

Silveira, 2009), huge amount of greenhouse gasses 
emission (Simmonds et al., 2005; Page et al., 2011), as 

well as greater intensity of smoke haze disaster (Heil et 

al., 2007; Wooster et al., 2012). Specifically, in regard 

to smoke haze disaster, Koplitz et al., (2016) have 

reported that the smoke haze generated from fire 

throughout Sumatera in 2015 had caused health 

problem to more than 100,000 people across Indonesia, 

Malaysia, and Singapore. 

In general, peat land fire in a tropical country 

like Indonesia could only be triggered by human 

activities (Tacconi et al., 2007; Murdiyarso & 

Adiningsih, 2007; Hooijer et al., 2012) Nevertheless, 
many studies also reveal that series of those major 

burning actions were strongly supported and related to 

prolonged drought characteristics due to El Nino 

seasonal phenomenon (van der Werf et al., 2008; Chen 

et al., 2011; Wooster et al., 2012; Doblas-Reyes et al., 

2013; Spessa et al., 2015). During the warm phase of 

El Nino Southern Oscillation (ENSO), Sea Surface 

Temperature (SST) in the western region of Pacific 

tends to drop from its normal average, causing 

significant reduction in precipitation rate and 

prolonging drought period that eventually increasing 

the risk of fire, particularly across degraded area 
(Siegert et al., 2001; Aldrian & Susanto, 2003; Zhao & 

Yang, 2014). Hence, if the relationship between 

seasonal phase of ENSO and series of peat land fire 

events be thoroughly studied, it is possible that the risk 

of incoming peat land fire may be predicted and 

anticipated accurately several months prior the event 

took place (Li et al., 2008; Jin et al., 2008; Barnston et 

al., 2010). 

Previously, many studies have been 

conducted to develop prediction models of seasonal 

fire. Using correlation information between series of 

forest fire and seasonal sea surface temperature 
movements. Chen et al. (2011) have successfully 

established prediction model for fire season severity in 

South America with 3-5 months lead times. 

Meanwhile, based on logistic regression approach, del 
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Hoyo et al., (2011) have produced models for human-

caused wildfire risk estimation in Spain. Harnessing 

similar approach, Mohammadi et al., (2013) have 

developed forest fire risk zone modelling in Iran, whilst 

Pan et al., (2016) have built probabilistic models of fire 
occurrences and fire risk zoning in China. Although all 

of those studies indicated current advances in the 

development of fire prediction models across the globe, 

however, it seems that such studies are still very limited 

in Indonesia. Considering this issue, by using spatial 

logistic regression approach, this study primarily aims 

to develop prediction models for peat land fire in 

Bengkalis Regency, Riau Province-Indonesia. Spatial 

logistic regression was chosen in this study since this 

approach is reasonably flexible and is able to accept a 

mixture of both numerical and categorical variables 

(Catry et al., 2009; Pan et al., 2016). This approach is 
also known as the most commonly used to develop fire 

prediction models which typically contain a binary 

response variable with “0” represents fire absence and 

“1” represents fire presence (Bisquert et al., 2012; 

Mohammadi et al., 2013; Zhang et al., 2014). The 

development of such prediction model is essentially 

needed to provide rapid and accurate information 

related to the probability of incoming peat land fire 

event, so that it is possible to prepare appropriate fire 

prevention and suppression strategies. 

Materials and Methods 

Research Area 

This study was conducted in Bengkalis Regency, 

which is located in Riau Province-Indonesia, as 

illustrated in Figure 1. This regency was chosen since 

65% of the total area is peat land (Syaufina & Hafni, 

2018). The regency is also considered as the largest 

contributor of peat land fires in Riau Province (Rosul, 

2015). Geographically, this regency is located at 

2o7’37.2”-0o55’33.6” North and 100o57’57.6”-

102o30’25.2” East. Administratively, this regency 

covers eleven districts, including the Bandar 

Laksamana, Bathin Solapan, Talang Muandau, 
Kecamatan Mandau, Pinggir, Bukit Batu, and Siak 

Kecil that are located across eastern coast of Sumatera 

Island. Rupat and Rupat Utara are located in the Rupat 

Island, as well as Bengkalis and Bantan are located in 

the Bengkalis Island. According to the Indonesian 

Centre for Statistic Agency (BPS, 2017), overall land 

extent of this regency is about 7.773,93 km2, which is 

dominated by lowland plain with the altitude ranging 

from 2 to 6 meters above sea level. 

Figure 1: Research area 

Data Collections 

Dependent variable in this study is the burned area on 

peat land in Bengkalis Regency, that based on binary 

logistical approach for each cell sized 100 x 100 meter, 
value of cell with burned area detected will be defined 

as 1, whilst cell with no burned area detected will be 

defined as 0. Meanwhile independent variables in this 

study are including physiographic variables (e.g. river 

and canal network density), peat physical 

characteristics variables (e.g. peat depth and peat 

decomposition type), human activity variables (e.g. 

type of peatland use and cover, and road network 

density), as well as climate variables (e.g. monthly 

precipitation rate and moisture index). 

Data for dependent variable, which is peat land 
fire occurrences, were extracted from Moderate 

Resolution Imaging Spectroradiometer (MODIS)-

MCD64a1 burned area product images. Since most of 

major peat land fire in Indonesia had taken place during 

El Nino years (Wooster et al., 2012; Spessa et al., 2015; 
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Field et al., 2016), data collection of this dependent 

variable was focused on years with significant 

indication of El Nino, which are 2002, 2004, 2006, 

2009, 2014 and 2015. The trend of peat land fire data 

is shown in Table 1. The data showed that for each of 
those years, the initial fire month ws indeed January, 

while peat land fires were only detected to presence 

until August. 

In regard to independent variables, data for peat 

depth and peat type were extracted from peat land map 

from Wetlands International Indonesia (WII) after it 

was updated using peat land map from the Ministry of 

Agriculture-Republic of Indonesia that had been 

accessed through Global Forest Watch-World 

Resources Institute and the National Peat Ecosystem 

Function Map from The Ministry of Environment and 

Forestry-Republic of Indonesia. In the meantime, data 
related to land use and land cover, road density, river 

density, and canal density were extracted from 

Indonesian Topographic Map from the Agency for 

Geospatial Information-Republic of Indonesia. 

In order to obtain monthly precipitation data, 

the Tropical Rainfall Measuring Mission (TRMM) 
3B43v7 satellite images product that were obtained 

from the GES-DISC Interactive Online Visualization 

and Analysis Infrastructure (GIOVANNI)-NASA. 

Meanwhile, to obtain moisture index, the Normalized 

Difference Moisture Index (NDMI) from Landsat 7 

and Landsat 8 satellite images were collected from the 

United States Geological Survey (USGS)-Earth 

Explorer. Subsequently, to define the optimum lead 

time of prediction models in this study, those monthly 

precipitation and moisture index data were collected 

and calculated following 4-monthly moving average 

approach, for the time span of one (t-1) to three (t-3) 
months prior the initial burning month. 

Table 1: Trend of peatland fire in Bengkalis Regency, Indonesia 

Year 
Burned Area (Hectares) 

Jan Feb Mar Apr May Jun Jul 

2002 527 8294 5151 - - - 20 

2004 2392 3713 142 - - 1530 763 

2006 546 225 474 - - - 1105 

2009 818 3343 - - 312 2696 3025 

2014 731 21907 28831 318 191 861 1124 

2015 369 389 2379 898 126 723 1675 

Total 5383 37871 36977 1216 629 5810 7712 

Year 
Burned Area (Hectares) 

Ags Sep Oct Nov Dec Total 

2002 - - - - - 13992 

2004 1379 - - - - 8540 

2006 1616 - - - - 2350 

2009 2328 - - - - 10194 

2014 467 - - - - 53963 

2015 - - - - - 6559 

Total 5790 - - - - 95598 

Source: calculated from MODIS 64a1 Burned Area Product satellite images 

Table 1 shows that the initial burning month 
of peat land fire occurrences were started from January, 

so that it was defined in this study as the initial burning 

month, while December, November, and October of 

the prior year were defined as t-1, t-2, and t-3 

respectively. Following the 4-monthly moving average 

calculation approach, it implies that climate data for 

October (t-3) was calculated as the average data from 

July, August, September, and October. While, climate 

data for November (t-2) was calculated as the average 

data from August, September, October and November. 

Then, climate data for December (t-1) was calculated 

as the average data from September, October, 
November, and December. To implement this moving 

average approach, since the trend of peatland fire was 

always started from January during the above-

mentioned years (2002, 2004, 2006, 2009, 2014, 2015; 

Table 1), the collection of both climate data 
(precipitation and NDMI) were conducted from the 

month of December, November, October, September, 

August, and July from the prior year (2001, 2003, 2005, 

2008, 2013, 2014). This kind of moving average 

calculation approach was previously implemented by 

Chen et al., (2011), who have successfully developed 

forest fire prediction models with 3-5 months lead 

times.  

Model Development 

Overall process of model development and analysis in 
this study was conducted using R Studio software, 

which is principally an open source programming 

software that is able to support big data computation. 
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Model development was started by partitioning 

collected data into two separate data set, namely 

training data set and testing data set. For this purpose, 

we applied stratified random data partition approach, in 

which that collected data were firstly stratified into six 
strata based on land use/land cover type (e.g. activities 

and residential area, bare land, farming field, 

plantation, forest, and shrubs). Then for each stratum, 

the data were proportionally and randomly divided 

with proportion of 80% for training data that be used 

for model development, and the rest of 20% were kept 

as testing data set that be used for model validation 

using confusion matrix mechanism. Similar data 

partition approach was also implemented by several 

previous studies such as del Hoyo et al., (2011), 

Quintano et al., (2011), Mohammadi et al., (2013), and 

Pan et al., (2016). Details of the number of data 
partitioned per stratum in this study is shown in Table 

2, where it can be seen that the total cell population (N) 

in this study was 521.948 cells. Overall, 80% of that 

cell population, or about 417.558 cells, were used to 

develop prediction model; while the rest 20 %, or about 

104.390 cells were used to validate the developed 

models.  

Table 2: Data partition per stratum 

Strata 
Number of cells partitioned Total Cells 

(100%) Train Set (80%) Test Set (20%) 

Activities and residential area 2826 707 3533 

Bare Land 741 185 926 

Farming Field 2580 645 3225 

Forest 187854 46964 234818 

Plantation 176893 44223 221116 

Shrubs 46664 11666 58330 

Total cells 417558 104390 521948 

Remark: size of each cell is 100x100m 

Subsequently, as suggested by several previous 

studies, such as Paciorek (2006), Zhang et al., 
(2010), del Hoyo et al., (2011), Mohammadi et al., 

(2013), and Pan et al., (2016), spatial logistic 

regression was then applied to develop peatland fire 

prediction models using training data set that had 

already been partitioned previously. Basic equation 
of spatial logistic regression used to develop models 

in this study can be written as follow: 

P= 
Exp (0+1∗Cnl_Den+2∗Rvr_Den+3∗Rd_Den+4∗Pt_LUC+5∗Pt_Depth+6∗Pt_Type+7∗NDMI+8∗Precip)

1+ Exp (0+1∗Cnl_Den+2∗Rvr_Den+3∗Rd_Den+4∗Pt_LUC+5∗Pt_Depth+6∗Pt_Type+7∗NDMI+8∗Precip)
(1) 

Where: 

 P is the probability that a fire occurs

 0 is the intercept

 1, 2, ... , 8 are numerical coefficients of each

variable

 Cnl_Den is the density of canal network (numerical

variable in square map unit)

 Rvr_Den is the density of river network (numerical

variable in square map unit)

 Rd_Den is the density of road network (numerical
variable in square map unit)

 Pt_LUC is the type of peat land use and land cover

(categorical variable covering six classes, namely

activities and residential area, bare land, farming

field, plantation, forest, and shrubs)

 Pt_Depth is the class of peat depth (categorical

variable covering four classes, namely D1 for peat

depth ranging from 50-100 centimeters, D2 for peat

depth ranging from 100-200 centimeters, D3 for

peat depth ranging from 200-400 centimeters, and

D4 for peat depth more than 400 centimeters)

 Pt_Type is the type of peat decomposition

(categorical variable covering eight classes, namely

H1a for peat decomposition type of

60%Hemic/40%Sapric at D1 depth class, H2a for 

peat decomposition type of 60%Hemic/40%Sapric 

at D2 depth class, H3a for peat decomposition type 

of 60%Hemic/40%Sapric at D3 depth class, H4a 

for peat decomposition type of 

60%Hemic/40%Sapric at D4 depth class, S1a for 

peat decomposition type of 60% Sapric/40%Hemic 
at D1 depth class, S2a for peat decomposition type 

of 60% Sapric/40%Hemic at D2 depth class, S2c 

for peat decomposition type of 50% 

Sapric/50%Mineral at D2 depth class, and S3a for 

peat decomposition type of 60% Sapric/40%Hemic 

at D3 depth class) 

 NDMI is the monthly Normalized Difference

Moisture Index (numerical variable with value

ranging from -1 to 1)

 Precip is the monthly precipitation rate (numerical

variable in mm/month)

Model Evaluation 

After prediction models were established, we then 

conducted verification tests using the value of Chi 

square test, Nagelkerke R2, and also area under 
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Receiver Operating Characteristic (ROC) curve, that 

has been also known as AUC test. In addition to those 

tests, we also conducted validation test to calculate the 

accuracy of established models by comparing 

prediction values with actual values from testing data 
set that had been partitioned previously. For this 

purpose, we applied confusion matrix, in which that the 

accuracy of a prediction model was calculated as a ratio 

(%) between the sum of true negative (TN) and true 

positive (TP) divided by total number of testing cells, 

as illustrated in Table 3. 

Table 3: Confusion matrix for model validation 

Remark: Model accuracy = (TN+TP)/(Total Cells); where total cells = TP+TN+FP+FN 

Results and Discussion 

Peatland Fire Prediction Models 

Harnessing spatial logistic regression approach, we 

have established three prediction models of peat land 

fire for initial fire month of January. Firstly, the t-1 

model (Table 4), which we used the 4-monthly moving 

average of NDMI and precipitation at December. 

Secondly, the t-2 model (Table 5), which we used 4-

monthly moving average of NDMI and precipitation at 

November. Finally, the t-3 model (Table 6), which we 

used 4-monthly moving average of NDMI and 

precipitation at October. In addition to those climate 

variables, the developed models also incorporated 
physiographic variables (e.g. river and canal network 

density), peat physical characteristics variables (e.g. 

peat depth and peat decomposition type), and human 

activity variables (e.g. type of peat land use and cover, 

and road network density). Overall, those explanatory 

variables illustrate good level of significance to be used 

as predictors of peat land fire in Bengkalis Regency.  

Interestingly, as illustrated in Table 4, 5, and 6, 

it seems that the first level for each categorical 

explanatory variable, namely activities and residential 

area in peatland use and cover, D1 in peat depth, and 

H1a in peat type are not shown. As explained by 
Jaccard (2001), this often happen since the coefficients 

of those first levels of categorical explanatory variables 

are already absorbed into the models’ intercept. 

Additionally, looking at the coefficient of explanatory 

variables presented in Table 4, 5, and 6, it seems that if 

their absolute values were displayed in descending 

sequence, then the variables that have the greatest 

portion in defining peatland fire occurrences are the 

climate variable (NDMI), followed by human activity 

variable (peatland use and cover), then peat physical 

characteristics variable (peat type), and lastly 

physiographic variable (river density). This finding is 
in line with several previous studies (Tacconi et al., 

2007; Hooijer et al., 2012; Wooster et al., 2012; 

Doblas-Reyes et al., 2013;; Mohammadi et al., 2013; 

Spessa et al., 2015) that explained that climate 

dynamics and human activities are the most 

determining factors in forest and peatland fire 

ignitions. 

Table 4: Explanatory variables and significance levels for prediction model of December (t-1) 

Estimate Std. Eror z value Pr(>|z|) 

(Intercept) -9.891E+00 2.006E-01 -4.930E+01 < 2E-16*** 

Cnl_Den -1.598E-03 8.506E-05 -1.879E+01 < 2E-16*** 

Rvr Den -1.103E-02 2.444E-04 -4.511E+01 < 2E-16*** 

Rd_Den 5.074E-03 5.935E-05 8.550E+01 < 2E-16*** 

Pt_LUC Bare Land 4.998E+00 1.940E-01 2.577E+01 < 2E-16*** 

Pt_LUC Farming Field 3.742E+00 1.830E-01 2.045E+01 < 2E-16*** 

Pt_LUC Forest 2.363E+00 1.770E-01 1.335E+01 < 2E-16*** 

Pt_LUC Plantation 2.994E+00 1.765E-01 1.696E+01 < 2E-16*** 

Pt_LUC Shrubs 3.311E+00 1.767E-01 1.873E+01 < 2E-16*** 

Pt_Depth D2 8.242E-02 1.430E-01 5.760E-01 5.64E-01*** 

Pt_Depth D3 7.892E-01 1.609E-01 4.906E+00 9.28E-07*** 

Pt_Depth D4 -3.266E-01 1.766E-01 -1.849E+00 6.44E-02  .

Pt_Type H2a 9.861E-01 1.442E-01 6.838E+00 8.02E-12*** 

Pt_Type H3a -1.329E+00 1.623E-01 -8.186E+00 2.71E-16*** 

Pt_Type H4a 8.201E-01 1.774E-01 4.623E+00 3.79E-06*** 

Pt_Type S1a 1.483E+00 3.775E-02 3.929E+01 < 2E-16*** 

Pt_Type S2a 2.069E+00 1.448E-01 1.429E+01 < 2E-16*** 

Pt_Type S2c 1.324E+00 1.496E-01 8.854E+00 < 2E-16*** 

Pt_Type S3a 2.737E+00 1.624E-01 1.685E+01 < 2E-16*** 

NDMI_December (t-1) -7.569E+00 9.140E-02 -8.282E+01 < 2E-16*** 

Precip_December (t-1) 2.482E-02 3.573E-04 6.948E+01 < 2E-16*** 

Significant codes: 0 '***'; 0.001 '**';  0.01'*'; 0.05'.'; 0.1 ' '; 1 

Initial fire month: January 

Predicted: 
No Fire (0) 

Predicted: 
Fire Occur (1) 

Actual: 
No Fire (0) 

True Negative (TN) False Positive (FP) 

Actual: 
Fire Occur (1) 

False Negative (FN) True Positive (TP) 
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Table 5: Explanatory variables and significance levels for prediction model of November (t-2) 

Estimate Std. Eror z value Pr(>|z|) 

(Intercept) -1.230E+01 2.166E-01 -5.679E+01 < 2e-16*** 

Cnl_Den -1.433E-03 8.485E-05 -1.689E+01 < 2e-16*** 
Rvr Den -1.156E-02 2.456E-04 -4.708E+01 < 2e-16*** 
Rd_Den 4.998E-03 5.941E-05 8.412E+01 < 2e-16*** 
Pt_LUC Bare Land 5.092E+00 1.937E-01 2.628E+01 < 2e-16*** 
Pt_LUC Farming Field 3.637E+00 1.829E-01 1.988E+01 < 2e-16*** 
Pt_LUC Forest 2.447E+00 1.768E-01 1.384E+01 < 2e-16*** 
Pt_LUC Plantation 3.034E+00 1.763E-01 1.721E+01 < 2e-16*** 
Pt_LUC Shrubs 3.373E+00 1.765E-01 1.911E+01 < 2e-16*** 

Pt_Depth D2 1.182E-01 1.436E-01 8.230E-01 4.10E-01*** 
Pt_Depth D3 7.783E-01 1.611E-01 4.832E+00 1.35E-06*** 
Pt_Depth D4 -2.696E-01 1.766E-01 -1.526E+00 1.27E-01*** 
Pt_Type H2a 9.614E-01 1.448E-01 6.640E+00 3.14E-11*** 
Pt_Type H3a -1.206E+00 1.625E-01 -7.419E+00 1.18E-13*** 
Pt_Type H4a 8.386E-01 1.774E-01 4.727E+00 2.28E-06*** 
Pt_Type S1a 1.544E+00 3.764E-02 4.101E+01 < 2e-16*** 
Pt_Type S2a 2.033E+00 1.453E-01 1.399E+01 < 2e-16*** 
Pt_Type S2c 1.352E+00 1.501E-01 9.008E+00 < 2e-16*** 

Pt_Type S3a 2.604E+00 1.626E-01 1.602E+01 < 2e-16*** 
NDMI_November (t-2) -6.577E+00 8.533E-02 -7.708E+01 < 2e-16*** 
Precip_November (t-2) 3.393E-02 4.952E-04 6.851E+01 < 2e-16*** 

Initial fire month: January 

Table 6: Explanatory variables and significance levels for prediction model of October (t-3) 

Estimate Std. Eror z value Pr(>|z|) 

(Intercept) -1.211E+01 2.296E-01 -5.272E+01 < 2e-16*** 

Cnl_Den -7.066E-04 8.375E-05 -8.437E+00 < 2e-16*** 

Rvr Den -1.318E-02 2.453E-04 -5.371E+01 < 2e-16*** 

Rd_Den 4.747E-03 6.029E-05 7.875E+01 < 2e-16*** 

Pt_LUC Bare Land 5.352E+00 1.935E-01 2.766E+01 < 2e-16*** 

Pt_LUC Farming Field 3.586E+00 1.830E-01 1.959E+01 < 2e-16*** 

Pt_LUC Forest 2.832E+00 1.765E-01 1.605E+01 < 2e-16*** 

Pt_LUC Plantation 3.274E+00 1.760E-01 1.860E+01 < 2e-16*** 

Pt_LUC Shrubs 3.743E+00 1.762E-01 2.124E+01 < 2e-16*** 

Pt_Depth D2 1.263E-01 1.428E-01 8.850E-01 3.76E-01*** 

Pt_Depth D3 6.566E-01 1.607E-01 4.086E+00 4.38E-05*** 

Pt_Depth D4 -3.230E-01 1.733E-01 -1.864E+00 6.23E-02**. 

Pt_Type H2a 8.133E-01 1.440E-01 5.648E+00 1.62E-08*** 

Pt_Type H3a -9.853E-01 1.621E-01 -6.078E+00 1.22E-09*** 

Pt_Type H4a 7.953E-01 1.740E-01 4.570E+00 4.89E-06*** 

Pt_Type S1a 1.677E+00 3.739E-02 4.485E+01 < 2e-16*** 

Pt_Type S2a 2.108E+00 1.445E-01 1.458E+01 < 2e-16*** 

Pt_Type S2c 1.258E+00 1.493E-01 8.429E+00 < 2e-16*** 

Pt_Type S3a 2.174E+00 1.619E-01 1.342E+01 < 2e-16*** 

NDMI_October (t-3) -6.658E+00 8.193E-02 -8.126E+01 < 2e-16*** 

Precip_October (t-3) 3.533E-02 6.382E-04 5.536E+01 < 2e-16*** 

Initial fire month: January 

Having established above mentioned peatland 

fire prediction models, we then conducted several tests 

to verified and validate them, where details of the 

results are shown in Table 7. Based on this table, 

although there is a slight decreasing trend in the result 

along with the increase in models’ lead times, it can be 

seen that all of those models are able to produce very 
good values for Chi square test, Nagelkerke R2, AUC 

and overall accuracy test. Looking first at Chi-square 

test result, this test has been commonly harnessed to 

calculate p-value for logistic regression based models, 

to indicate the significance of the overall model 

(Mangiafico, 2015). Based on this notion, overall, it 

can be said that the three models established in this 

study are highly significance to predict peatland fire 

occurrences since their p-value are constantly 
maintained at <0.001. Meanwhile, their Nagelkerke R2 

range, which is 0.314-0.326, is above the average value 
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of Nagelkerke R2 produced by previous studies, such 

as Mohammadi et al., (2013) and Pan et al., (2016). 

Afterwards, further examining the models, we 

calculated the value of area under the Receiver 

Operating Characteristic (ROC) curve that has been 
known as the AUC. Principally, according to Massada 

et al., (2013), the ROC plot illustrates relationship 

between the true-positive rate (sensitivity or the 

proportion of ignitions correctly predicted) and the 

false-positive error rate (1-specificity; where 

specificity is the proportion of non-ignitions correctly 

predicted) for each threshold value to the probability of 

the presence predicted by the model. The AUC value is 

ranging from 0.5 - 1, where 0.5 represent worthless 

prediction model since it equal to a fully random 

prediction, while 1 implies perfect prediction model 

(McCune et al., 2002; Pan et al., 2016). Based on this 
perspective, it seems that models established in this 

study are able to conduct reliable performance to 

predict peatland fire since their AUC value are 0.8333, 

0.8331, and 0.8309 for t-1, t-2, and t-3 model 

respectively (Figure 2). 

Moving on to the validation measure to 

evaluate the models overall accuracy of correct 

predicted peatland fire occurrences. It can be seen on 

Table 7 that those models ability to produce true 

positive cells (correct predicted fire occurrences cell) is 

decreasing along with the increase in their lead times. 
In other words, it can be said that the longer the lead 

time, the lower number of correct predicted fire 

occurrences cells will be produced by the models. 

Nevertheless, all those models (t-1, t-2, & t-3) still 

manage to hold relatively stable overall accuracy at 

85%.  

In regard to the difference between lead times 

and available preparation time (Table 7), it should be 
kept in mind that although our t-3 model is able to 

predict peatland fire occurrences in January by using 4-

monthly moving average climate data at October (3 

months prior the event happens), however, climate data 

for October could only available to be accessed in 

November. Hence, the available time to prepare before 

initial fire month are only 2 months.  

Similarly, for t-2 model that is able to predict 

peatland fire occurrences in January by using 4-

monthly moving average climate data at November (2 

months prior the event happens), however, climate data 

for November could only available to be accessed in 
December. Therefore, the available time to prepare 

before initial fire month are only one month. 

Subsequently, for t-1 model that is able to predict 

peatland fire occurrences in January by using 4-

monthly moving average climate data at December (a 

month prior the event happens), however, climate data 

for December could only available to be accessed in 

January. This implies that there is no time available to 

prepare before initial fire month. Since our focus in this 

study is to establish prediction model with the 

maximum possible lead time and preparation time, so 
that we selected t-3 model to produce peatland fire 

prediction map (Figure 3). The equation (1) of this 

model can be written mathematically as follow: 

P = 
Exp {−12.11+(−0.0007066∗Cnl Den)+ −0.01318∗Rvr Den+ ...  +(0.03533∗Precip)}

1+ Exp {−12.11+(−0.0007066∗Cnl Den)+ −0.01318∗Rvr Den+ ...  +(0.03533∗Precip)}

Table 7: Result of verification and validation tests to developed peatland fire prediction models for initial fire month of 
January 

Peatland Fire Prediction Models 

December (t-1) November (t-2) October (t-3) 

Lead time 1 month 2 months 3 months 
Available preparation time 0 1 months 2 months 

Verification measures: 
Chi square 88045  

p <0.001 
86683  

p <0.001 
84404  

p <0.001 
Nagelkerke R2 0.326 0.321 0.314 
Area under ROC curve (AUC)  0.8333  0.8331  0.8309 

Validation measure: 

Number of true positive cells  
(correct predicted fire occurrences) 

5063 4792 4309 

Number of true negative cells  

(correct predicted no fire occurrences) 

84031 84095 84594 

Total number of testing cells 104390 104390 104390 

Overall accuracy of correct predicted values 85.35% 85.15% 85.16% 
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0< - <30% 

30< - <80% 

80< - 

<100% 

Probability level 

Figure 2: Calculated values of area under the Receiver Operating Characteristic curve (AUC) 
for (a) t-1 model, (b) t-2 model, and (c) t-3 model 

Figure 3: Peatland fire prediction map for initial fire month of January based on prediction model of October (t-3) 
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Influencing Factors of Peatland Fire in Bengkalis 

Regency 

In order to investigate predicted peatland fire 
occurrences related to influencing factors, established 

prediction map (Figure 3) was classified into three 

levels of probability, as suggested by Giglio (2015). 

We then analyze the third level, which is predicted fire 

occurrences with probability > 80%, since according to 

Giglio (2015) areas with this level of probability were 

seen to be highly prone to fire occurrences. Results of 

this examination were depicted in Table 8, in which it 

can be seen that about 96% predicted peatland fire are 

related to NDMI range of -0.06 – 0.30; whilst 99% of 

predicted peatland fire are detected in areas with 

monthly precipitation range of 230-246 mm/month, or 
about 7.6 – 8.2 mm/day. This finding is consistent with 

a recent study by Field et al., (2016), who reported that 

forest and peatland fire in Sumatera are strongly related 

to climate variables, and tend to emerge when the daily 

precipitation rate less than 10 mm/day. 

Meanwhile, there are three types of peatland 

use and cover that have been identified with predicted 

probability of peatland fire > 80%, namely, shrubs, 

plantation, and forest. Among those three, it seems that 
we need to be more aware to peatland that have been 

used as plantation, since 92% of predicted peatland fire 

with probability level > 80% are detected in this area. 

This finding is also in line with findings reported by 

Tacconi (2003), and Tacconi et al., (2007), who stated 

that fires were often used during land opening and 

clearing, particularly in plantations and planted forests 

in Sumatera. In regard to peat physical characteristics, 

it can be seen that 90% of peatland fire are predicted to 

take place at peat depth of above 100 cm, whereas 78% 

of predicted fire are likely to take place at hemic peat 

type. Considering canal and river network density, it 
seems that both of these topographic variables are 

having a negative relationship with peatland fire 

prediction, since the lower the density of both 

variables, the higher the proportion of peatland fire 

predicted. On the other hand, road density is posing a 
positive trend towards peatland fire prediction. 

Table 8: Predicted peatland fire occurrences related to influencing factors 

Variable Classes 

Fire occurrences prediction with probability 

level above 80% 

Number of identified cells Proportion 

NDMI  

(numerical index) 

-0.06 - 0.15 902 46% 

0.15 - 0.30 988 50% 

0.30 - 0.45 89 4% 

Total identified cells 1979 

Precipitation 

(mm/month) 

222-230 22 1% 

230-238 1456 74% 

238-246 501 25% 

Total identified cells 1979 

Peatland use and 

cover (categorical) 

Shrubs 64 3% 

Plantation 1830 92% 

Forest 85 4% 

Total identified cells 1979 

Peat depth 

(categorical) 

D1 (50-100 cm) 189 10% 

D2 (100-200 cm) 888 45% 

D3 (20-400 cm) 366 18% 

D4 (>400 cm) 536 27% 

Total identified cells 1979 

Peat type 

(categorical) H1a (60%Hemic/40%Sapric at D1) 60 3% 

H2a (60%Hemic/40%Sapric at D2) 650 33% 

H3a (60%Hemic/40%Sapric at D3) 294 15% 

H4a (60%Hemic/40%Sapric at D4) 542 27% 

S1a (60% Sapric/40%Hemic at D1) 126 6% 

S2a (60% Sapric/40%Hemic at D2) 220 11% 

S2c (50% Sapric/50%Mineral at D2) 11 1% 

S3a (60% Sapric/40%Hemic at D3) 76 4% 

Total identified cells 1979 

Canal Density 

(km/km2) 
0 - 0.5 570 29% 

0.5 - 1.1 1192 60% 

1.1 - 1.6 217 11% 

Total identified cells 1979 

River Density 

(km/km2) 

0 - 0.1 1806 91% 

0.1 - 0.2 162 8% 

0.2 - 0.3 11 1% 

Total identified cells 1979 

Road Density 

(km/km2) 

0 - 0.8 317 16% 

0.8 - 1.7 1087 55% 

1.7 - 2.5 575 29% 

Total identified cells 1979 

Model used: t-3 model (Chi-sq: 84404***; Nagelkerke R2: 0.314; AUC: 0.8309; Overall accuracy: 85.16%) 
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Conclusion 

This study presented the development of 

comprehensive peat land fire prediction models to be 

implemented in Bengkalis Regency, Indonesia. The 
spatial logistic regression method used in this study 

also shows that this kind of approach evidently can be 

a reliable way to establish fire prediction models. Such 

models have been presented in this report, in which that 

a prediction model that can provide preparation time up 

to 2 months before the beginning of peatland fire 

season was selected to produce a prediction map based 

on physiographic variables, peat physical 

characteristics variables, human activity variables, and 

climate variables. Performance of the selected peatland 

fire prediction model has been verified and validated 

using an independent testing subset, and the results 
showed are consistently reliable. The established 

prediction map can be used to answer important 

questions, particularly in regard to the causative factors 

of peatland fire ignition in the spatial domain, so that it 

can help the authorities to undertake necessary and 

sufficient prevention measures. 
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