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Introduction 
Self-Potential (SP) is used to describe the 
naturally occurring electric fields that are found 
everywhere in the earth (Skianis, 2012; Idris et 
al., 2015; Olivatiand & Cardarelli, 2017). The 
self-potential method is a geophysical method 
that requires measuring the potential differences 
in millivolts (mV) or volt correspond to a survey 
base, that is produced by an electric field and in 
the interpretation of self-potential anomalies, the 
+ve or –ve sign of the potential is an important 
diagnostic factor (Ikard et al., 2013; Adeeko et 
al., 2018). In recent years the method has enjoyed 
a renewed interest due to improvements in both 
the instrumentation and field methods. Self-
potential generated by groundwater flows with 
respect to a solid, and it is the only geophysical 
phenomenon directly related to the transport of 
subsurface water and the self-potential can also 
be called the ‘Streaming Potential’ (Alamta et al., 
2012; Emujakporue, 2016). The self-potential 

method is used almost exclusively to map the 
flow of groundwater through porous materials 
for engineering, environmental or groundwater 
geophysics and these can be unconsolidated 
porous soil deposits or fractures in weathered 
bedrock (Martínez-Pagán et al., 2010; Moore 
et al., 2011; Giampaolo et al., 2016). The self-
potential method involves measurement of 
electric potential associated with this electric 
field and using them to infer the behaviour and 
properties of the hydraulic system.  

The ability of the material to transmit fluid 
through fractures and pore spaces in the presence 
of an applied hydraulic gradient is known as 
Hydraulic conductivity (Nimmo et al., 2009; 
Salarashayeri & Siosemarde, 2012). Darcy’s 
Law defined hydraulic conductivity as the ratio 
of the average velocity of a fluid through a cross-
sectional area to the applied hydraulic gradient 
(Daniel, 1989; Odong, 2008). Hydraulic 
conductivity is used for estimating groundwater 
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recharge through the vadose zone (Reynolds 
& Elrick, 1990; Fetter, 2001). Hydraulic 
conductivity values are used for modelling 
by hydrologists, and hydraulic conductivity 
values use it to determine soil health or how 
water flows through the soil at different field 
sites for prediction by researchers. Hydraulic 
conductivity is used to determine irrigation 
rates or nutrient leaching or erosion prediction 
in agricultural decisions (Nimmo et al., 2009). 
Essentially, to know how water will move 
within the soil system, hydraulic conductivity 
must understand because it governs water 
flow. The particle size distribution, soil texture, 
tortuosity, roughness, degree of interconnection 
of water-conducting pores, and shape are the 
factors hydraulic conductivity depends on. 
Soil texture, coarser textured soils have higher 
hydraulic conductivities than fine-textured soils. 
However, structured soil has large pores, while 
structureless soil has smaller pores (Reynolds & 
Elrick, 1990).

Groundwater is water that fills the cracks 
and areas between soil particles, sand grains, 
and rock (Song et al., 2009; Bohling & Butler, 
2010; Jardani et al., 2006; Rosas et al., 2014; 
Voytek et al., 2016). Each drop of rain that soaks 
into the soil moves downward to fill these areas 
and gaps, thereby turning into groundwater keep 
within the soil and rock (Alamta et al., 2012; 
Brauchler et al., 2013; Soueid et al., 2014; Gao 
et al., 2018). The places during which surface 
water infiltrates into the soil square measure 
recharge zones, wherever groundwater is 
found and therefore the places during which 
groundwater seeps or flows into surface water 
square measure discharge zones (Maineult et 
al., 2006; Linde et al., 2011; Essa & Elhussein, 
2017; Muhammad, 2019). Groundwater happens 
both in loosely aggregated and unconsolidated 
materials, like sand and gravel, and in 
consolidated rocks, like sandstone, limestone, 
granite, and basalt (Fagerlund & Heinson, 2003; 
Giampaolo et al., 2016; Mohd et al., 2019). In 
the capability to move and store groundwater the 
earth matter varies, the earth materials’ strength 
to move groundwater varies by vital orders. It 
is also regulated by the interconnection, size, 

shape, and volume of areas between solids 
within the materials of various sorts, e.g. the 
interconnected pore areas in finer-grained 
sediments smaller than those in sand and gravel 
(Putvance, 2000; Odong, 2008; Nabi-Sichani 
& Sepaskhah, 2012). Therefore the hydraulic 
conductivity (K) of the finer-grained materials 
is smaller than the hydraulic conductivity (K) 
of sand and gravel (Morin, 2006; Lopez et al., 
2015; Harry et al., 2018). Water flow through 
soil is influenced by its structure, where 
connecting pores are the natural pathway for 
water and air exchange (Revil & Leroy, 2004; 
Alakayleh et al., 2018). The total porosity not 
only influenced water movement through the 
soil, however, essentially by the size of the 
pores, corresponding to the amount of sand, silt, 
and clay dictate such property (Straface et al., 
2010; Cabalar & Akbulut, 2016; Bol`eve et al., 
2007). Soil texture is the main factor that affects 
soil structure origination.  Therefore, there  a 
need to review the influence of the soil structure 
on self-potential and hydraulic conductivity 
for groundwater flow in Sungai Batu, Lembah 
Bujang, Kedah as the population and industries 
increase, which can affect the usage of water and 
cause infiltration of pollutants and subsequent 
contamination of groundwater derived from 
refuse dump, improper use and disposal of 
pesticides that result in serious environmental 
hazard and loss of life and properties due to 
flood and landslide, if not properly studied.

Materials and Methods  
Geology of Kedah and study area
Kedah is situated on the northwest coast of 
Peninsular Malaysia, bordered by the Straits 
of Malacca on the west, by Penang and Perak 
in the south, and by Perlis in the north. In the 
central and south Kedah, Mahang Formation is 
exposed. Fauziah et al., (2006); Khodzori et al., 
(2019) divided the Mahang Formation into four 
lithofacies: (1) dominant argillaceous facies (2) 
subsidiary arenaceous facies (3) minor siliceous 
facies that grades into the argillaceous (4) 
restricted calcareous facies. In the Mahang area, 
Khodzori et al., (2019) divided the Mahang 
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Formation into four members; dark grey shale 
or sandstone, dark graptolite-bearing shale, 
flagstone and chert, massive dark mudstone 
and red and grey laminated shale as indicated 
in Figure 1. In Peninsular Malaysia, the 
oldest civilization site is Kedah as shown by 
archaeological evidence.  

The study was done in the archaeological 
site, Sungai Batu, Lembah Bujang, Kedah and 
the area is surrounded by palm trees on all sides 
and has nearly flat topography. There are four 
(4) survey lines (SB1  to  SB4) spaced over 30 m 
x 9 m for the self-potential survey, the electrode 
spacing is 2 m using a fixed base array between 
latitude 5.69400N-5.694265N and longitude 
100.454582E-100.4547866E. The soil samples 
were collected at different locations from SS1 to 
SS3. The soil sample one (SS1) is located at 2.5 
m distance in SB2 with 3.5 m depth maximum, 
the soil sample two (SS2) is located at 21 m 
distance in SB2 with 3.5 m depth maximum, and 
the soil sample three (SS3) is located at 7.5 m 
distance in SB3 with 1 m depth maximum due 
to constraint as shown in Figure 2. The borehole 
(BH10) information from the area which helps 
in the interpretation of the soil that consists of 
sand, sandy clay, and gravel at the top and at 
the center with sandy clay with little gravel and 

at the bottom consisting of mottle dry, content 
little weathered and gravel deposit.  Also, the 
borehole record shows that the area consists of 
dark brownish sandy clay, reddish or yellowish 
clay and shale material which are very firm dry 
conditions.

Experimental design
Self-potential
A simple SP survey consists of a base electrode 
and a roving electrode to determine potential 
differences in a grid survey or along profile 
lines. The required equipment merely includes 
a pair of non-polarising copper (Cu) electrodes, 
CuSO4 solution, wire, small hoe, measuring tape, 
12V battery, and ABEM SAS40000 Terrameter. 
The electrode in contact with the ground surface 
was the non-polarizing type, also called porous 
pots (Revil et al., 2003; Srivastava & Agarwal, 
2009; Malama, 2014; Essa & Elhussein, 2017). 
Porous pots are metal electrodes suspended in a 
supersaturated solution of their own salts (copper 
electrode suspended in copper sulfate) within a 
porous container (Jouniaux et al., 2009; Roudsari 
& Beirollahi, 2015; Jougnot et al., 2015). The 
background voltage is as small as possible when 
these pots produce very low electrolytic contact 

Figure 1: Geological map of Kedah and the study area
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potential. Sealed porous pots are used to avoid 
evaporation of the salt solution (Tanguy et al., 
2011; Gokturkler & Balkaya, 2012; Mehanee, 
2015) and they keep the supersaturated solutions 
for a longer time. Only one set of a base and the 
moving electrode is used for the measurement 
along the profile line. The Potential amplitude or 
total field method (fixed base) configuration was 
adopted, keeping one electrode fixed at a base 
station away from the survey line at about 15 m 
and the rover electrode. The voltage between a 
based liquid-junction electrode and a mobile one 
is a measure, and multiple readings (4 cycles) 
are taken and the average is found using ABEM 
SAS4000 Terameter. When water reacts as an 
electrolyte and as a different minerals’ solvent, 
the potential is generated by water flow, which 
is the common factor responsible for self-
potential (Linde et al., 2011; Mao et al., 2015; 
Muztaza et al., 2018). The potential difference 
was generated by electrokinetic potential and 
the electrokinetic potential: Fluid (electrolyte) 
flow in a porous medium generates potential 
along the flow path known as electrofiltration, 
streaming potential and which is caused by 

electrokinetic coupling between the fluid ions 
and the walls of the capillary/porous medium. 
Ek is an electrokinetic potential generated given 
by Eq. 1

                                                                                              (1)

Where,
ε = Dielectric permittivity of pore fluid; ρ 
= Electrical resistivity of pore fluid; Cᴇ = 
Electrofiltration coupling coefficient; ∆P = 
Pressure difference; ɳ = Dynamic viscosity 
of pore fluid; Ek is opposite to the direction of 
the electrolyte flow and Ek normally provides 
amplitudes of some mV to several hundred mV. 
Ek is associated with the flow of subsurface 
water as indicated in Eq 1.

Sieve Analysis and Grain-Size Distributions 
(GSDs)  
Sieving is done using quantity of dry soil by 
a set of British Standard Soil Classification 
System (BS) BS410/1986 sieve with mesh 
sizes (No ¼”, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 
20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 100, 120, 
140, 170, 200, 230 corresponding to equivalent 

Figure 2: Study area shows the survey lines and soil sample locations in Sungai Batu 
(Google Earth 2018)
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diameter 6.30, 4.75, 4.00, 3.35, 2.80, 2.36, 2.00, 
1.70, 1.40, 1.18, 1.00, 0.85, 0.71, 0.60, 0.50, 
0.43, 0.36, 0.30, 0.25, 0.21, 0.18, 0.15, 0.13, 
0.11, 0.09, 0.075, 0.063 mm respectively. The 
soil sample is then sieved. The amount of soil on 
each sieve is weighed and the percentage of the 
entire material that is passing through each sieve 
is used to plot the grain-size curve, to determine 
the soil type and hydraulic conductivity. Sorted 
soil with larger grains will have high hydraulic 
conductivity (Hussain & Nabi, 2016; Alakayleh 
et al., 2018). This is because the void between 
the larger grains is filled up with smaller grains.

The hydraulic conductivity (K) is a measure 
of the ability of the soil to transmit water and is an 
important parameter for studying the subsurface 
flow and transport problems (Chapuis, 2012; 
Hussain & Nabi, 2016). From grain size to 
estimate K the equations normally apply two 
metrics from a grain size distribution plot: the 
10 % of the sample is finer (90 % is coarser) of 
the grain diameter “D10” and 60 % of the sample 
is finer (40 % is coarser) of the grain diameter 
“D60”. D10 is frequently taken as the effective 
diameter of the sample while the ratio CU = D60/
D10 is known as the coefficient of uniformity and 
CC = D30² / D60 x D10 is known as the coefficient 
of curvature (Carrier, 2003; Ishaku et al., 2011). 
The soil used in this research is saturated soil 
and sandy, and as a result, the standard formula 
given by Hazen is used to calculate hydraulic 
conductivity of the soil from a grain size 
distribution plot as shown in Eq 2.

                          K = CH(D10)
2                                     (2)

where K = hydraulic conductivity (m/s); CH = 
Hazen empirical coefficient; and D10 = is grain 
diameter corresponds in grain size curve at 10 
% of content (mm).  The value of CH is usually 
assumed to be between 1.0 - 1.5 (Hazen, 1982; 
Carrier 2003; Salarashayeri & Siosemarde, 
2012).   

Results and Discussion
The % passing was plotted against the particle 
diameter, from the grain-size distribution 
curves with the aim to measure the particle size 
distribution of undisturbed soil samples from 

Sungai Batu Kedah, using British Standard 
(BS410) sieve. The soils are classified into soil-
type groups according to particle size, such as 
gravel, coarse sand, medium sand, fine sand, and 
very fine sand. The raw data obtained from self-
potential were input into Microsoft excel and 
then processed using Surfer 8 software. The self-
potential result reveals two anomalies, negative 
and positive anomalies ranging from -30 mV 
to 35 mV related to recharging and discharging 
activities. A grading curve is a useful aid to soil 
classification/description. Results of the grading 
curve were shown in Figures 3-5 for soil sample 
taken at 2.5 m distance is SS1 while the soil 
sample taken at 21 m distance is SS2 and the 
soil sample taken at 7.5 m distance is SS3 and 
self-potential is shown in Figure 6 with the aim 
of relating the calculated hydraulic conductivity 
(K) with the self-potential magnitude which has 
not been researched on.

Figure 3 shows all the soil sample one (SS1) 
for 2.5 m distance from 0.5 m, 1 m, 1.5 m, 2 m, 
2.5 m, 3 m, and 3.5 m depth.  

From soil sample one (SS1) at 0.5 m depth 
as shown in Figure 3a, the investigated soil is 
classified based on the grain-size distribution 
curve which is as follows: 18.4% gravel, 31.2% 
coarse sand, 31.9% medium sand, 17.6% fine 
sand and 0.9% very fine sand with coefficient of 
uniformity value of 7.39, coefficient of curvature 
value of 1.85 and hydraulic conductivity value 
of 0.053 m/s. This shows that the soil at this 
depth is more of medium sand and coarse sand 
than gravel and fine sand and less of very fine 
sand. The self-potential has value <-15 mV and 
with increased dissolved inorganic materials in 
the water, thus giving low self-potential.  

For soil sample one (SS1) at 1 m depth, 
the investigated soil is classified based on the 
grain-size distribution curve as shown in Figure 
3b: 11.6% gravel, 31.3% coarse sand, 34.2% 
medium sand, 21.9% fine sand and 1.0% very 
fine sand with coefficient of uniformity value 
of 13.5, coefficient of curvature value of 1.02 
and hydraulic conductivity value of 0.029 m/s. 
At this depth, it shows that the soil is more of 
medium sand and coarse sand than fine sand 
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and gravel and less of very fine sand. The self-
potential has value <-15 mV and self-potential 
is low when the dissolved inorganic materials in 
water increases. 

Soil sample one (SS1) at 1.5 m depth the 
investigated soil is classified based on the 
grain-size distribution curve as shown in Figure 
3c: 5.6% gravel, 24.6% coarse sand, 31.9% 
medium sand, 37.1% fine sand and 0.8% very 
fine sand with coefficient of uniformity value 
of 9.64, coefficient of curvature value of 0.48 
and hydraulic conductivity value of 0.020 m/s. 
At this depth, the soil shows more of fine sand 
and medium sand than coarse sand and less of 
gravel and very fine sand. The self-potential has 
value <-15 mV and as the dissolved inorganic 
materials in water increases give low self-
potential.

Soil sample one (SS1) at 2 m depth, the 
investigated soil is classified based on the grain-
size distribution curve with the following as 
shown in Figure 3d: 10.9% gravel, 33.9% coarse 
sand, 32.4% medium sand, 21.8% fine sand and 
1.0% very fine sand with coefficient of uniformity 
value of 13.11, coefficient of curvature value of 
0.59 and hydraulic conductivity value of 0.032 
m/s. It shows that the soil at this depth is more 
of coarse sand and medium sand than fine sand 
and gravel and less of very fine sand. The self-
potential has value <-15 mV and as the dissolved 
inorganic materials in water increases give low 
self-potential.

Soil sample one (SS1) at 2.5 m depth the 
investigated soil is classified based on the grain-
size distribution curve with the following as 
shown in Figure 3e: 7.8% gravel, 30.3% coarse 
sand, 33.2% medium sand, 28.1% fine sand and 
0.7% very fine sand with coefficient of uniformity 
value of 12.67, coefficient of curvature value of 
0.88 and hydraulic conductivity value of 0.023 
m/s. The soil at this depth shows more medium 
sand, coarse sand, and fine sand than gravel and 
less of very fine sand. The self-potential has 
value <-15 mV and as the dissolved inorganic 
materials in water increases give low self-
potential.

Soil sample one (SS1) at 3 m depth the 
investigated soil is classified based on the grain-
size distribution curve with the following as 
shown in figure 3f: 7.1% gravel, 25.3% coarse 
sand, 35.4% medium sand, 31.4% fine sand and 
0.8% very fine sand with coefficient of uniformity 
value of 10.71, coefficient of curvature value of 
0.69 and hydraulic conductivity value of 0.020 
m/s. It shows that the soil at this depth is more 
of medium sand, fine sand, and coarse sand 
than gravel and less of very fine sand. The self-
potential has value <-15 mV and as the dissolved 
inorganic materials in water increases give low 
self-potential.

Soil sample one (SS1) at 3.5 m depth, the 
investigated soil is classified based on the grain-
size distribution curve with the following as 
shown in Figure 3g: 8.7% gravel, 29.6% coarse 
sand, 34.3% medium sand, 26.7% fine sand and 
0.7% very fine sand with coefficient of uniformity 
value of 11.85, coefficient of curvature value of 
0.82 and hydraulic conductivity value of 0.026 
m/s. At this depth, the soil shows more medium 
sand, coarse sand and fine sand than gravel and 
less of very fine sand. The self-potential has 
value <-15 mV and as the dissolved inorganic 
materials in water increases give low self-
potential.  

Figure 4: All the soil sample one (SS2) for 
21 m distance from 0.5 m, 1 m, 1.5 m, 2 m, 2.5 
m, 3 m, and 3.5 m depth  

Soil sample two (SS2) at 0.5 m depth as 
shown in figure 4a; soil is classified into soil-
type groups according to size which consists 
of 26.7% gravel, 26.7% coarse sand, 30.4% 
medium sand, 14.8% fine sand and 1.1% very 
fine sand with coefficient of uniformity value 
of 12.31, coefficient of curvature value of 1.2 
and hydraulic conductivity value of 0.068 m/s. 
It shows that the soil at this depth is more of 
medium sand, coarse sand, and gravel than 
fine sand and less of very fine sand. The self-
potential has value <5 mV and as the dissolved 
inorganic materials in water increases give low 
self-potential.
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Soil sample two (SS2) at 1 m depth soil 
is classified into soil-type groups according 
to size as shown in Figure 4b which consists 
of 13.6% gravel, 30.8% coarse sand, 33.7% 
medium sand, 20.0% fine sand and 1.4% very 
fine sand with coefficient of uniformity value 
of 12.42, coefficient of curvature value of 1.06 
and hydraulic conductivity value of 0.036 m/s. 
At this depth, the soil shows more of medium 
sand and coarse sand than fine sand and gravel 

and less of very fine sand. The self-potential 
has value <5 mV and as the dissolved inorganic 
materials in water increases give low self-
potential.

Soil sample two (SS2) at 1.5 m depth soil 
is classified into soil-type groups according 
to size as shown in Figure 4c which consists 
of 19.0% gravel, 24.3% coarse sand, 27.2% 
medium sand, 28.2% fine sand and 1.2% very 
fine sand with coefficient of uniformity value 

Figure 3: Grain size distribution curve at 2.5 m distance for soil sample one (SS1) at depth of (a) 0.5 m (b) 1 
m (c) 1.5 m (d) 2 m (e) 2.5 m (f) 3 m (g) 3.5 m
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of 15.73, coefficient of curvature value of 0.57 
and hydraulic conductivity value of 0.023 m/s. 
The soil at this depth shows more of fine sand, 
medium sand, and coarse sand than gravel and 
less of very fine sand. The self-potential has 
value <5 mV and as the dissolved inorganic 
materials in water increases give low self-
potential.

Soil sample two (SS2) at 2 m depth soil 
is classified into soil-type groups according 
to size as shown in Figure 4d which consists 
of 12.7% gravel, 33.2% coarse sand, 31.4% 
medium sand, 20.9% fine sand and 1.8% very 
fine sand with coefficient of uniformity value 
of 13.78, coefficient of curvature value of 1.07 
and hydraulic conductivity value of 0.032 m/s. 
It shows that the soil at this depth is more of 
coarse sand and medium sand than fine sand 
and gravel and less of very fine sand. The self-
potential has value <5 mV and as the dissolved 
inorganic materials in water increases give low 
self-potential.

Soil sample two (SS2) at 2.5 m depth the 
investigated soil is classified based on the grain-
size distribution curve with the following as 
shown in figure 4e: 18.9% gravel, 28.9% coarse 
sand, 28.5% medium sand, 21.2% fine sand and 
2.5% very fine sand with coefficient of uniformity 
value of 16.75, coefficient of curvature value of 
0.84 and hydraulic conductivity value of 0.026 
m/s. The soil at this depth shows more coarse 
sand and medium sand than fine sand and gravel 

and less of very fine sand. The self-potential 
has value <5 mV and as the dissolved inorganic 
materials in water increases give low self-
potential.

Soil sample two (SS2) at 3 m depth: the 
investigated soil is classified based on the grain-
size distribution curve with the following as 
shown in Figure 4f: 17.8% gravel, 31.9% coarse 
sand, 29.0% medium sand, 20.1% fine sand and 
1.1% very fine sand with coefficient of uniformity 
value of 14.74, coefficient of curvature value of 
1.17 and hydraulic conductivity value of 0.036 
m/s. It shows that the soil at this depth is more 
of coarse sand and medium sand than fine sand 
and gravel and less of very fine sand. The self-
potential has value <5 mV and as the dissolved 
inorganic materials in water increases give low 
self-potential.  

Soil sample two (SS2) at 3.5 m depth: the 
investigated soil is classified based on the grain-
size distribution curve with the following as 
shown in Figure 4g: 15.6% gravel, 28.3% coarse 
sand, 31.8% medium sand, 22.7% fine sand and 
1.6% very fine sand with coefficient of uniformity 
value of 13.88, coefficient of curvature value of 
0.87 and hydraulic conductivity value of 0.029 
m/s. At this depth, the soil shows more medium 
sand, coarse sand and fine sand than gravel and 
less of very fine sand. The self-potential has 
value <5 mV and as the dissolved inorganic 
materials in water increases, a give low self-
potential is seen.  
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Figure 5 show  the soil sample three (SS3) 
for 7.5 m distance from 0.5 m and 1 m depth.  

Soil sample three (SS3) at 0.5 m depth and 
the investigated soil is classified based on the 
grain-size distribution curve which is shown in 
Figure 5a: 27.3% gravel, 24.8% coarse sand, 
26.6% medium sand, 18.5% fine sand and 2.6% 
very fine sand with coefficient of uniformity 
value of 18.33, coefficient of curvature value of 
1.05 and hydraulic conductivity value of 0.032 
m/s. This shows that the soil at this depth is 
more of gravel, medium sand and coarse sand 
than fine sand and less of very fine sand. The 
self-potential has a value <-10 mV and as the 
dissolved inorganic materials in water increases, 
self-potential becomes low.

Soil sample three (SS3) at 1 m depth: the 
investigated soil is classified based on the grain-

size distribution curve with the following as 
shown in Figure 5b: 20.2% gravel, 27.1% coarse 
sand, 30.4% medium sand, 21.0% fine sand and 
1.2% very fine sand with coefficient of uniformity 
value of 14.21, coefficient of curvature value of 
0.93 and hydraulic conductivity value of 0.036 
m/s. At this depth, it shows that the soil is more 
of medium sand and coarse sand than fine sand 
and gravel and less of very fine sand. The self-
potential has a value <-10 mV and an increase 
of the dissolved inorganic materials in water 
increases gives rise to low self-potential.  

Table 1 shows the calculated results from 
particle size distribution curve for the coefficient 
of uniformity (CU), coefficients of curvature 
(CC), the hydraulic conductivities (K) and the 
analysis of self-potential and the magnitude 
(mag).

Figure 4: Grain size distribution curve at 21 m distance for soil sample two (SS2) at depth of (a) 0.5 m 
(b) 1 m (c) 1.5 m (d) 2 m (e) 2.5 m (f) 3 m (g) 3.5 m
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Figure 5: Grain size distribution curve at 7.5 m distance for soil sample three (SS3) 
at depth of a) 0.5 m b) 1 m

Table 1: Summary of the grain size distribution and interpretation for soil sample SS1, SS2, SS3 and self-
potential result
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Self-potential Result
The output of self-potential in Figure 6 shows 
the high resolution of two anomalies of negative 
and positive, and the signals give a clear 
understanding that fluid motion is from higher 
value towards the lower value. The values of the 
anomalies range from -30 mV to 35 mV which 
is related to fluid motion direction. The negative 
anomaly which is the low anomaly is associated 
with the recharge zone (infiltration) and the 
positive anomaly which is the high anomaly is 
associated with the discharge zone (Suski et al., 

2006; Mao et al., 2015; Hassan et al., 2019). 
Figure 6 is the contour map of self-potential 
which shows the water flow. Water flows from 
the central and southeast to the southwest part. 
The arrow is the combination of flow direction 
and magnitude, the arrowhead indicates the flow 
direction while the tail indicates the magnitude 
strength i.e. the magnitude can be short or long 
depending on the soil structure. The result 
reveals that water flows from the central and 
southeast to the southwest part in a lateral 
direction in the study area.

Figure 6: Contour map shows the flow of water direction generated by horizontal subsurface flow
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Figure 7 shows the magnitude of self-
potential at the auger drill point, soil sample 
one (SS1) at distance 2.5 m in SB2 with 
magnitude value of 0.3 and the soil type at this 
point is medium sand with slow water flow, soil 
sample two (SS2) at distance 21 m in SB2 with 
magnitude value of 0.7 and the soil type at this 
point is medium soil with slow water flow, and 
soil sample three (SS3) at distance 7.5 m in SB3 
with magnitude value of 0.5 and the soil type at 
this point is medium sand with slow water flow.  

In summary, the result of the Sungai Batu 
area shows that water flows laterally from the 
center and southeast to the southwest parts. The 
values of the anomalies of self-potential range 
between -30 mV to 35 mV which are related 
to recharge and discharge activities. The low 
potential difference (low millivolt) -30 mV 
to -5 mV of the self-potential anomaly is the 
subsurface water flow recharge area. Therefore, 
the area is sandy clay with an increase in 
dissolved inorganic materials in water that gives 
low SP. The water table is shallow to the depth of 
2.7 m in this area. SB3 shows a high magnitude 
of self-potential at the 13.5 m istance. The grain 
size distribution shows that the soil is composed 

of average percentage value of 17.17% gravel, 
28.19% coarse sand, 30.67% medium sand, 
22.42% fine sand and 1.42% very fine sand, 
which indicates that the soil consists of more 
medium sand, coarse sand, fine sand, gravel and 
less of very fine sand. The composition of the 
soil in terms of their proportion is medium sand > 
coarse sand > fine sand > gravel > very fine sand. 
The arrangement of the soil particles indicates 
the aggregate that the soil is loose and friable. It 
was observed from Table 1 that the soil at SS1 
has more of medium sand with an average value 
of hydraulic conductivity of 0.029 m/s and the 
magnitude is 0.3. Both are low at this point with 
the self-potential value of <-15 mV, which may 
be increased in dissolved inorganic materials in 
water. The soil at SS2 has more medium sand 
with an average value of hydraulic conductivity 
of 0.036 m/s and the magnitude is 0.7. Both are 
low at this point with the self-potential value 
of <0 mV, which may be due to increasing in 
dissolved inorganic materials in water. The soil 
at SS3 has more medium sand with an average 
value of hydraulic conductivity of 0.034 m/s 
and magnitude of 0.5. Both are low at this point 
with the self-potential value of <-10 mV, which 

Figure 7: Magnitude of self-potential (SP) at Sungai Batu
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may be due to increasing in dissolved inorganic 
materials in water. The potential of water flow 
was determined in this area using self-potential 
and grain size distribution. Water flow through 
soil is influenced mostly by pores size, and the 
relative proportion of gravel, sand, silt, and clay. 
The self-potential interpretation shows flow 
direction/infiltration recharging and discharging 
activities which depend on soil structure and 
magnitude. Both results show that soil structure 
influences water flows in the study area. This 
study has been able to show the influence of the 
soil structure on self-potential, magnitude, and 
hydraulic conductivity for groundwater flow in 
this area. 

Conclusion
The soil was composed of average percentage 
value of 17.17% gravel, 28.19% coarse sand, 
30.67% medium sand, 22.42% fine sand and 
1.42% very fine sand, from the curve of grain 
size distribution results which shows that the 
arrangement of the soil particles indicates the 
aggregate that the soil is loose and friable. Thus, 
the hydraulic conductivity (K) value range 
from 0.020 to 0.053 m/s is low, and the self-
potential magnitude value ranging from 0.3 to 
0.7 is low. The soil type in this area is more of 
medium sand with low hydraulic conductivity 
and self-potential magnitude. Therefore, this 
study has been able to show the importance 
of self-potential, magnitude, and hydraulic 
conductivity which provide precise knowledge 
of the source of water flow, flow pattern, 
soil structure influence, and the relationship 
between hydraulic conductivity and self-
potential magnitude which will strengthen water 
management in the study area and can be used 
when faced with engineering and environmental 
problems.  
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