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Introduction 
Floods are natural disasters that cause 
considerable material, social and environmental 
losses and frequently result in loss of human 
lives (Casagrande et al., 2017). Of all natural 
disasters, floods impact the greatest number 
people across the world (Moore et al., 2005). In 
the USA, the Mississippi “Great Flood” in 1993 
was the most severe on record, while catastrophic 
floods in China and Bangladesh are a way of life 
associated with much human suffering and death 
(Moore et al., 2005; Fakhruddin et al., 2015). In 
Thailand, the Bangkok “Great Flood” in 2011 
was reported to have caused global economic 
damage (Swiss Re, 2012). 

 Flood warning systems are important to 
mitigate the effects of flooding (Werner et al., 
2009), forecasting is an essential tool in the 
warning process. The aim of flood forecasting 
is to increase the lead time for a flood warning 
system (Casagrande et al., 2017). Many flood 

forecasting approaches are available, such 
as extrapolation techniques, simple transfer 
function models, unit hydrograph approaches 
and hydrodynamic models (Werner et al., 2009). 
In Nepal, successful forecasting increased lead 
time from 2-3 to 7-8 hours and reduced the risk 
of flooding (Smith et al., 2017). In Brazil, flood 
forecasts can be issued up to 48 hours ahead 
with a low rate of false warnings, based on a 
hydrological model for stream-flow forecasting 
(Casagrande et al., 2017). In Bangladesh, the 
one-dimensional modeling software MIKE11 
was used to simulate water levels and discharges 
in rivers for deterministic flood forecasting up to 
72 hours ahead (Hettiarachchi & Thilakumara, 
2015).

Hat Yai city is a center for economics, trade, 
education and tourism in southern peninsular 
Thailand and has frequently experienced 
flooding (Supharatid, 2006; Chalermyanont 
& Chup-Uppakarn, 2015). The city and its 
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suburban areas are on the floodplains at the 
downstream of the U-Tapao Basin (Figure 1). Its 
population exceeds half a million people. In the 
last three decades, three major floods in 1988, 
2000 and 2010, that heavily affected residents 
and severely damaged the economy of the city 
(Supharatid, 2006; Kongjun & Noipairoj, 2011). 
It can be simply said that a major flood occurs 
about every 10 years. After the 2010 flood, the 
largest ever recorded, a meeting organized by 
Prince of Songkla University concluded that 
because the city is on a floodplain, flooding 
is   unavoidable, but an effective flood warning 
system should be put in place to minimize 
damage. In response to this conclusion, a 
Songkhla Flood-Watch Committee (SFWC) 

was appointed by the governor of Songkhla 
province. The SFWC consists of representatives 
from the Royal Irrigation Department (RID), 
the Thai Meteorological Department (TMD), 
the Department of Water Resources (DWR), 
the Department of Disaster Prevention and 
Mitigation (DDPM), the Hat Yai Municipality 
and the Prince of Songkla University (PSU). Its 
duties were mainly to develop flood forecasting 
and warning systems.

This paper describes procedures used by 
the SFWC to select appropriate water-level 
forecasting approaches to warn Hat Yai city 
of floods. Three approaches of water-level 
forecasting were considered, namely streamflow 
routing, unit hydrograph and MIKE 11 DA 

Figure 1: The U-Tapao Basin
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modeling. This paper also focuses on improving 
the flood-warning lead time to provide enough 
response time. 

Study Area
The U-Tapao Basin (Figure 1) is in Songkhla 
province, in southern Thailand. The basin 
consists of 10 sub-basins with a drainage area of 
2,392 km2 and is between N718000 to N788000 
and E630000 to E682500. It is surrounded 
by mountainous areas on the eastern and 
western sides, while the northern and southern 
boundaries are the Sonkhla Lake and the Thai-
Malaysian border, respectively. The U-Tapao 
river is the main drainage path of the basin with 
about 102 km in length and average upstream 
and downstream slopes of 1:10,000 and 1:200, 
respectively. The river flows from Sadao district 
in the south through the center of the basin and 
Hat Yai city and finally drains to the Songkhla 
Lake (Chalermyanont & Chup-Uppakarn, 2015). 
The drainage capacity of the river in Hat Yai city 
is 465 cms (Kongjun & Noipairoj, 2011).

  Data from 21 raingauge stations, installed 
after the 2010 flood and two streamflow stations 
(Figure 1) were used courtesy of the TMD and 
the RID, respectively. The two main streamflow 
stations are the upstream station at Maunggong 
and the downstream station at Bangsala, labeled 
as X173A and X90, respectively. According to 
local experience and practices (DDPM, 2015), 
the water level at X90 station has been used 
to generate early flood warnings. The city will 
be flooded within 3-5 hours if the water level 
at X90 station reaches +9.30 m above mean sea 
level (msl). However, an early warning lead 
time of 3-5 hours is not sufficient for various 
types of responses, such as executive decision 
making by the governor and dissemination of 
the flood warning through various methods, 
including the media. In addition, flood warning 
acceptance and evacuation of a big city such as 
Hat Yai takes time. Thus, a longer flood warning 
lead time is needed. 

Methods
In this study, three approaches were used to 
forecast water level at the X90 station at hourly 
intervals in order to gain a longer flood warning 
lead time. Details of streamflow routing, unit 
hydrograph and MIKE 11 Data Assimilation 
(DA) approaches are provided below. 

Streamflow Routing Approach 
A simple streamflow routing method is a 
lumped method for forecasting downstream 
water level based on the fact that if a high 
water level is detected upstream, in time, the 
water level will also increase downstream. 
It makes use of measured water levels at 
upstream and downstream stations and a 
linear relationship between peak water levels 
upstream and downstream can be determined. 
A linear relationship between the flow time 
(i.e., time difference between peak water levels 
downstream and upstream) and peak water 
level at upstream is also determined. These 
relationships are shown in Equations 1 and 2 
(Sukhapunnaphan, 2014).

Hd = a1Hu + b1   (1)

T = a2Hu + b2   (2)

where Hd is peak water level downstream, Hu is 
the peak water level upstream, T is the flow time 
and  a1, a2, b1, b2 are constants. 

In this study, time series data of measured 
water levels at X173A (upstream) and X90 
(downstream) stations from 2005 to 2010 were 
used to determine the relationships in Equations 
1 and 2. The relationships were employed to 
determine that water level at X173A station that 
corresponds to a +9.30 m msl water level at the 
X90 station (i.e., the flood warning criterion 
adopted in the past). By doing this, the use of 
water level at X173A station for flood warning 
could increase flood warning lead time. 

Unit Hydrograph Approach 
Unit hydrograph is a direct runoff hydrograph 
resulting from a centimeter of excess rainfall 
generated over the basin (Chow et al., 1988; 
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Gribbin, 2007). It is a rainfall-runoff model that 
provides a transfer function to convert excess 
rainfall to stream discharge (or water level). 
In case of several storms, the hydrograph at a 
location can be computed using the discrete 
convolution equation shown in Equation 3.

 

   (3)

where Qn is stream discharge, Pm  is excess 
rainfall, Un-m+1 is unit hydrograph and subscript  
m is number of storms (m = 1,2,..., n). For more 
details on the discrete convolution equation, 
readers can refer to Chow et al. (1988).

In this study, a 3-hour unit hydrograph for 
the X90 station was developed using the Snyder 
method (Snyder, 1938; Chow et al., 1988) with 
the following parameters: basin drainage area 
(A) = 1524 km2, length of the mainstream from 
X90 station to the upstream divide (L) = 88.61 
km and distance from X90 station to a point on 
the stream nearest the centroid of the basin area 
(Lc) = 50.12 km. For the lag coefficient (Ct) and 
the peak flow coefficient (Cp), as reported by 
Mitparian and Klubsong (2012), the respective 
values used were 3.14 and 0.51. 

Mike 11 DA Approach 
The MIKE 11 DA model is a numerical model 
developed by the Danish Hydraulic Institute 
(DHI, 2011) and is an efficient water level 
forecasting tool. It makes use of the rainfall-
runoff model (RR model) and the hydrodynamic 
model (HD model), while real-time measured 
water level data are incorporated into the model 
to improve the accuracy of forecasts. In this 
study, the RR and HD models by Chalermyanont 
and Chup-Uppakarn (2015) were used. For the 
RR model, the catchment area was set from 
upstream of the X90 station. The catchment area 
of the RR model was 1,524 km2. The Thiessen 
method was employed to compute the average 
rainfall. The NAM model (abbreviation for 
“Nedbør-Afstrømnings-Model” in Danish, 
meaning a precipitation-runoff-model), which 
is a lumped system routing model based on 

spatial averaging, was used in the RR model 
(DHI, 2011). The calibrated NAM parameters 
representing basin characteristics such as surface 
zone root zone, groundwater storages and others 
were employed in the model. Results from the 
RR model as time series hydrograph were used 
as inputs to the HD model. 

The HD model simulates 1-D flow with 
the dynamic wave description by solving the 
vertically integrated equations of conservation 
of continuity and momentum, the so-called 
‘Saint Venant’ equations (DHI, 2017). These 
equations are as follows:

    (4)

  (5)

where Q is discharge, A is flow area, R is 
hydraulic or resistance radius, h is stage above 
datum, q is lateral inflow, C is Chezy resistance 
coefficient and a is momentum distribution 
coefficient.

For the HD model set up, Chalermyanont & 
Chup-Uppakarn (2015) used two river networks 
representing the U-Tapao River and the R1 Canal. 
Note that the R1 Canal is a flood diversion canal 
(Figure 1). Lengths of the U-Tapao River and 
the R1 Canal are 102 and 21 km, respectively. 
The R-1 canal was linked to the U-Tapao River 
at N772375 and E661320. Chainages of the 
river network were assigned every 1,000 m and 
their corresponding river cross-sections were 
imported. Open boundary conditions were set 
for both upstream and downstream boundaries. 
Parameters of the HD model were calibrated and 
used in MIKE 11 DA model. 

Data assimilation (DA) is a technique for 
combining measurements of the state of the 
system with the model dynamics in order to 
improve knowledge of the system. The data 
assimilation module in MIKE 11 can be used 
for assimilating water level and discharge 
measurements to the DA model. The data 
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assimilation methods implemented in MIKE 11 
DA model are sequential algorithms. In this case 
the sequential updating of the model solution 
is performed with forward model integration, 
in which the model forecast and the data are 
melded by a Kalman filter (DHI, 2017). 

In this study, the MIKE 11 DA model 
was employed for water level forecasting and 
flood warning lead time determination. Time 
of forecast, measured rainfall and water level 
data used as inputs are summarized in Table 1. 
Time of forecast (TOF) refers to the time that the 
water level forecast is made using all the rainfall 
recorded prior to that particular time. The first 
time of forecast (TOF1) was on January 1st, 
2012, at 00.00 am. Other TOFs were made every 
3 hours for a total of 6 TOFs.

Performance Evaluation of Water Level 
Forecasting Approaches
Performance evaluation of the three water level 
forecasting approaches was conducted based on 
accuracy of the lead time. The 2012 flood that 
took place on January 1st and 2nd, 2012 was used 
in the case study because complete rainfall and 
discharge data were available. In this event, 
the rain began falling on December 29th, 2011, 

while extremely heavy rainfall was observed 
on December 31st, 2011 and January 1st, 2012. 
Computed basin average daily rainfalls from 
December 29th, 2011 to January 1st, 2012 were 
5.30, 8.41, 54.87 and 157.52 mm, for the 
respective days. 

In the performance evaluation process, 
forecast of water level and flow time at X90 
station with +9.30 m msl was computed based 
on the approaches described above, using either 
the rainfall or water level data of the 2012 
flood. Expected and actual lead times were then 
computed by subtracting a time at which either 
the computed or measured water level reached 
+9.30 m msl with the time of forecast. The 
measured water level data showed that the water 
level at X90 station reached +9.30 m msl on 
January 1st at 19:00 while the peak water level 
of +10.01 m msl was recorded on January 2nd 
at 2:00. The river started overflowing in low-
lying areas of Hat Yai city around midnight to 
2:00 of January 2nd and the peak water level 
was observed at 10:00 on the same day.  Among 
the three approaches, the best approach would 
provide the longest lead time and the least lead 
time error (absolute difference of expected and 
actual lead times). 

Table 1: Time of forecast, measured rainfall and water level data

Number of 
Forecast

Time of Forecast Measurement

Date Time Accumulated Average 
Rainfall (mm)

X90 Water Level    
(m msl)

TOF1 01-01-2012 0:00 78.25 +3.34

TOF2 01-01-2012 3:00 145.31 +3.65

TOF3 01-01-2012 6:00 201.34 +4.52

TOF4 01-01-2012 9:00 218.47 +5.60

TOF5 01-01-2012 12:00 224.84 +7.15

TOF6 01-01-2012 15:00 226.08 +8.20
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Results and Discussion
Streamflow Routing Results 
Analytical results of the simple streamflow 
routing method in terms of a relationship 
between the water levels at X173A and X90 
stations and the flow time, are shown in Figure 
2 and Equations 6 and 7. The dH  seems to 
be well predicted by uH , but T  is not well 
predicted. The R2 values of Equations 6 and 7 
are 0.9548 and 0.4922, respectively. 

  Hd = 1.541Hu – 16.06 (6)

 T   = –3.425Hu + 65.03 (7)

Equation 6, thus, was employed to 
determine the uH  at X173A station that 
corresponds to the flood warning water level at 
X90 station (i.e., dH = +9.30 m msl). Similarly, 
Equation 7 was used to determine the flow time 
between these two stations. This flow time T  is 
the expected lead time of the early warning. The 
computed uH  at X173A station was +16.46 
m msl and the computed T  was about 9 hrs. 
However, the observed times of uH  and dH  
were respectively 14:00 and 19:00 on January 
1st, so the actual lead time was 5 hours or about 
4 hours less than the model inferred lead time. 
Because of the poor relationship of Equation 7, 
a poor expected lead time was obtained. 

Unit Hydrograph Results
A synthetic 3-hour unit hydrograph, developed 
for the X90 station based on the Snyder method, 
is shown in Figure 3. It mainly shows that a 
centimeter of excess rainfall over the catchment 
area of the X90 station would generate a 
peak discharge of 74.38 cms within about 30 
hours. The discrete convolution technique 
(i.e., Equation 3) was applied using the unit 
hydrograph and the rainfall data of the 2012 
flood, to forecast the discharge and corresponding 
water level at the X90 station. A series of plots 
of computed water level vs time are shown in 
Figure 4. Note that TOFs details refer to Table 
1. Computed water level at X90 station does not 
reach +9.30 m msl in TOF1 to TOF3 plots. In 
the TOF3 plot, in particular, the peak water level 
is +9.16 m msl. In the TOF4 plot, the water level 
at X90 station reaches +9.30 m msl at 23:00 on 
January 1st, 2012. Thus, TOF4 can be used for 
issuing flood early warning with expected lead 
time of 14 hours. However, the actual lead time 
observed was 10 hours. 

MIKE 11 DA Results
The measured and simulated hydrographs of 
X90 station from December 2011 to January 
2012 were used in the calibration of the RR and 
HD models, as presented by Chalermyanont 

Figure 2: Relationships between peak water level and flow time
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and Chup-Uppakarn (2015). These two models 
were calibrated separately by changing related 
parameters repeatedly until the measured and 
simulated hydrographs were matched. The 
calibration results are shown in Figure 5. The 
best R2 values obtained from the calibration 
were 0.919 and 0.959 for the RR and HD 
models, respectively. The calibrated models 
were then validated using another set of the X90 
hydrographs from November to December 2013. 
The R2 values obtained from the validation were 
0.854 and 0.870 for the RR and HD models, 
respectively. The calibration and validation of 
the models were conducted effectively, hence; 
the models were ready for forecasting water 
level at the X90 station.  

Water level forecast results for X90 station 
calculated using the MIKE 11 DA approach 
are shown in Figure 6. For TOF1 to TOF3, the 
accumulated rainfalls were 78.25, 145.31 and 
201.34 mm, respectively, while the measured 
water levels at X90 station updated to the 
model were +3.34, +3.65 and +4.52 m msl, 
respectively (Table 1). In these TOFs, clearly, 
the water level does not reach +9.30 m msl and 
no early warning can be issued. However, for 
TOF4 (i.e., January 1st, 09:00) with accumulated 
average rainfall of 218.47 mm and measured 
water level at X90 station of +5.60 m msl, the 
forecasted water level reached +9.30 m msl at 
19:00 on the same day. If based on this result, 
an early warning was issued, a lead time of 10 

Figure 4: Water level forecasting results from unit hydrograph approach

Figure 3: Snyder’s 3-hour unit hydrograph for X90 station
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hours would be expected. This expected lead 
time is exactly correct and matches the actual 
lead time. 

Discussion
Expected and actual lead times for flood early 
warnings derived from three alternative water 
level forecasting approaches are shown in Table 
2. The expected lead time ranges from 9 to 14 
hours. The actual lead time, however, ranges 
from 5 to 10 hours. Unit hydrograph and MIKE 
11 DA approaches gave similar actual lead 
times of 10 hours, while the streamflow routing 
approach gave the least actual lead time of 5 
hours. In addition, performance evaluation of 

Figure 6: Water level forecasting results from MIKE 11 DA

Figure 5: Simulated and measured hydrographs of X90 station used in the calibration of the RR and HD 
models (from Chalermyanont & Chup-Uppakarn, 2015)

the approaches using the actual lead time and 
the lead time errors shown in Table 2 reveal that 
the best approach is the MIKE 11 DA approach 
(i.e., actual lead time = 10 hours and lead time 
error = 0 hour) while the worst approach is the 
streamflow routing approach (i.e., actual lead 
time = 5 hours and lead time error = 4 hours).

For the streamflow routing approach, it 
is relatively the simplest approach and can 
be done at community level but it has some 
disadvantages such as low lead time and high 
lead time error. In this approach, the water level 
was used for flood warning, as water level rises 
after a certain time following the rain; thus, the 
resulting lead time was naturally less than that 
of other approaches, where rainfall information 
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Table 2: Expected and actual lead times for flood warning derived from three water level forecasting 
approaches

Approach
Warning Time Lead Time (hours) Lead Time 

Error (hours)

Date Time Expected Actual

Streamflow routing 01-01-2012 14:00 9 5 4

Unit hydrograph 01-01-2012 9:00 14 10 4

MIKE 11 DA 01-01-2012 9:00 10 10 0

was used. Besides, the poor goodness of fit 
(i.e., R2 of 0.4922) of Equation 7 indicates 
low accuracy in the prediction of the flow 
time. Moreover, rainfall information was not 
considered in this approach and in such a case, 
if a high concentration of rainfall taking place 
in areas close to the location was considered; 
it would affect both flow and lead times and in 
turn, decrease the accuracy of the forecast. 

According to the results of the actual lead 
time and the lead time error, the unit hydrograph 
approach was the second-best approach for 
providing early flood warning. Since its actual 
lead time is similar to that of MIKE 11 DA 
approach, the unit hydrograph approach (which 
is much simpler than MIKE 11 DA approach) 
could be employed practically. The lead time 
error could be reduced with proper modifications 
and calibration. Compared to the measured water 
level plot (Figure 4), the plots of TOFs show the 
early rising curves and lower peak water levels 
than the measured one, thus recalibration of the 
Snyder’s parameters Ct and Cp is recommended 
if further work is pursued. 

The MIKE 11 DA approach is the most 
complex and expensive approach and was the 
best approach based on results of this case study. 
It provided the longest lead time with lowest lead 
time error. Furthermore, its water level forecasts 
of TOF4 and beyond essentially matched the 
recorded measurements as the corresponding R2 
values, as shown in Figure 6, are close to unity. 
Consideration of the spatial rainfall distribution, 
the rainfall-runoff model and the hydrodynamic 
flow, along with updated water levels up to the 

time of forecast, altogether make this approach 
robust and accurate in water level forecasting.

Accurate flood forecasting remains 
difficult to achieve due to uncertainties in many 
components along the computational chain, 
especially in rainfall measurement/estimation, 
rainfall-runoff modeling, flood routing and 
hydrodynamic modeling. Since issuing a false 
early warning would cause lots of difficulties 
and loss of credibility, the SFWC decided not to 
solely use the MIKE 11 DA approach for flood 
forecasting and warning. Currently, forecasts by 
unit hydrograph and MIKE 11 DA approaches 
are used. The streamflow routing approach 
is still officially used for flood early warning 
despite its lesser lead time. 

Conclusion
Three water level forecasting approaches were 
tested to determine a suitable approach for 
improving lead time of flood warnings to Hat Yai 
city. The testing was based on one case of severe 
flooding, with available records of relevant 
data. Based on a performance evaluation, the 
approaches rank in order of performance are 
MIKE 11 DA, unit hydrograph and streamflow 
routing. In addition, increasing the lead time 
from 5 to 10 hours can be achieved. In the 
flood routing approach, in which flood warning 
is based on the measured water level at an 
upstream station, the lead time is 5 hours while 
the other two approaches that utilize measured 
rainfall give longer lead times of 10 hours. 
The increased lead time is sufficient for flood 
responses based on local practice.
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