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Introduction 
The increasing population growth in Indonesia 
poses a major challenge to the national food 
security system. The increase in population 
growth must be balanced with the availability of 
sufficient food to maintain food security stability 
and  avoid relying on imports. Dependence on 
food imports can have negative consequences 
on future food security. This is reflected in the 
Global Food Security Index (GFSI) data from 
the Economic Intelligence Unit that shows 
Indonesia ranks third-lowest in Southeast Asia 
(The Economist Impact, 2021) in terms of food 
security.

In the Industrial Revolution 4.0 era, 
integrating agriculture into digital technology 
systems presents a viable solution to promote 
and enhance the food security system. One 
of the functions of digital agriculture is to 

facilitate access to farmers in overseeing the 
entire agricultural process, including production 
and all economic activities. The integration of 
digital technology in agriculture aligns with the 
Regional Government Work Plan in East Java 
for 2021, which aims to improve food security 
and enhance the competitiveness of potential 
agricultural product development commodities 
through the modernization of agricultural 
infrastructure (East Java Statistical Book, 2021). 
However, digital agriculture may face obstacles 
due to low levels of technology literacy among 
farmers, which can be attributed to the lack of 
education among farmers.

Sustainable agriculture is one of the 
implementations of sustainable development. 
Sustainable development is an effort to 
harmonise, integrate, and give equal weight 
to the economic, social, cultural, and 
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environmental aspects. The development of the 
agricultural sector has a high multiplier effect 
of stimulating economic growth (Loizou et 
al., 2019). In maintaining the sustainability of 
farming, it is necessary to introduce technology, 
where agricultural technology is an essential 
means of accelerating the transformation of 
agricultural science and technology achievement 
and encouraging agricultural modernisation 
development (Yin et al., 2018). Technology 
extension agriculture involves technical 
information, solving farmers’ technical problems 
online, and providing agricultural technology 
support through new media, farm technology 
and mobile phone applications (Li et al., 2018). 
In many cases, innovative technologies play 
an essential role in developing sustainable 
agricultural systems, which promise to increase 
food security (Diagne & Cabral, 2017). 

The concept of sustainable food production 
is formed from three critical pillars, consisting 
of science and technology, social and economic 
factors, and the environment Socioeconomic 
instruments include producers, consumers, 
farmers, markets, and institutions. Meanwhile, 
environmental tools include land, water, 
climate, and biodiversity. At the same time, 
the components of science and technology aim 
to increase agricultural yields and improve the 
management of agricultural products. One form 
of technology used is digital technology, which 
leads to a positive transformation in the farming 
sector, changing agriculture and agribusiness in 
developing countries (Nielson et al., 2018).

A more modern digitalisation of agriculture 
uses agricultural technology systems with 
sensors to collect data and intelligent machines 
to retrieve data (Poppe et al., 2015). This agrarian 
technology leads to the concept of smart farming 
(Sonka, 2015). Supporting similar research on 
the idea of intelligent farming (Macnaghten 
et al., 2015), the description of the future of 
digital agriculture is called “master narratives”, 
which prioritise maximising food yields through 
technology. The concept of intelligent farming 
includes soil testing and fertilisation technologies 
(soil testing and fertilisation technologies), 

water-saving irrigation technology, and pest 
control technology, digital technology (Yin et 
al., 2018).

On the other hand, studies on technology 
adoption in developing countries show that the 
main barriers hindering adoption are access 
to technology and a lack of financial services 
(Alwang et al., 2019). In addition, another 
factor influencing the adoption rate is the 
specific characteristics of the household, such 
as age, gender, household size, and farmers’ 
education level (Mwangi & Kariuki, 2015; 
Theis et al., 2018). The latest research on the 
adoption of agricultural technology conducted 
in China showed that the results of agricultural 
technology extension with a new model could 
increase the technology adoption rate among 
farmers to some extent with partial effects, and 
farmers of different ages and with varying sizes 
of farmland obtain other benefits as well (Gao 
et al., 2020).

The endogenous growth theory forms the 
basis of character strengths, namely, personal 
resources, which are expected to influence the 
decision to adopt technological innovations 
(S. Bukchin & Kerret, 2018). Apart from the 
potential of exploiting the character of farmers 
for sustainable technology implementation, 
researchers and practitioners usually focus 
on character deficiencies and barriers (Cafer 
& Rikoon, 2018). Each farmer possesses a 
unique set of characteristics that influences 
their approach to applying natural resources 
in agriculture. These individual traits, such 
as creativity, curiosity, courage, justice, self-
regulation, and judgment, can greatly impact 
the overall effectiveness of their agricultural 
practices (Shira Bukchin & Dorit, 2020).

Several areas in East Java still have food 
insecure areas (East Java Government, 2021). 
The inequality of food distribution that occurs 
in East Java makes it necessary to analyse its 
relationship further with the behaviour patterns 
of farmers in areas with high production and 
low production. In addition, the Agricultural 
Area Masterplan of East Java Province Based 
on Farmers’ Corporations for 2020-2024 
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was compiled based on East Java Governor 
Regulation Number 31 of 2020. This plan aims 
to develop East Java’s agricultural potential 
and is therefore relevant to the formulation of a 
digital technology approach model for farmers 
in the region. (East Java Government, 2021). 
Therefore, it is necessary to conduct a more in-
depth study to formulate a digital technology 
approach model for farmers in East Java.

Previous studies have discussed more 
technology at the boundaries of the production 
process and the role of digital technology, 
which is described qualitatively. There is a gap 
theory, based on the “social learning” theory 
pioneered by Bandura (1977), which explains 
that individuals can achieve symbolic images 
of activities that serve as guides in carrying out 
appropriate actions. In the context of farmers’ 
attitudes towards technological innovation, it 
can be influenced by natural environmental 
conditions or agro-ecosystem. 

Meanwhile, the “theory of planned 
behaviour” pioneered by Ajzen (1991) explains 
that a person’s behaviour arises from the intention 
to behave, which is called perceived behaviour 
control. Social and institutional conditions 
greatly influence technology adoption. This 
means it is important to consider local wisdom 
and its application when introducing and training 
new agricultural technologies. This approach 
can increase community participation and 
the adoption of mechanisation in the farming 
process. (Kuntariningsih, 2014). 

Based on the two theories, there is a gap that 
farmers adopting technology can be influenced 
by natural environmental factors, agro-
ecosystems or local wisdom (institutional). The 
novelty of this research lies in the development 
of a model that encompasses both the knowledge 
and behavior aspects of farmers in adopting 
technology, with a focus on environmental and 
institutional factors. The ultimate goal is to 
increase farmers’ efficiency through technology 
adoption. The resulting agriculture model for the 
future can serve as a reference for policymakers 
to formulate effective subsidies and technology 
policies.

Materials and Methods
The study was conducted using a quantitative 
approach with the use of the structural 
equation modelling (SEM) as the prime 
method of analysis SEM is a set of techniques 
for evaluating latent relationships among 
multifaceted variables (Bunkus et al., 2020). 
It works based on hypotheses representing the 
means, variances, and covariance of empirical 
data concerning a smaller number of ‘structural’ 
factors distinct by a hypothesized underlying 
theoretical or hypothetical framework. It is 
a combined approach of factor analysis and 
multivariate regression that can be used to 
evaluate the structural connection between latent 
and measured paradigms or variables (Bradshaw 
& Minin, 2019). The data was evaluated using 
the Warp-PLS 6.0 SEM (Structural Equation 
Model) software.

Data Collection
The data collection of this study was conducted 
through offline surveys and direct interviews. 
The study sampled farmers from four districts 
in East Java Province, namely Banyuwangi, 
Mojokerto, Malang City, and Batu City, with 
the selection criteria being farmers who were 
knowledgeable about or had implemented 
mechanisation during the harvest process. The 
sample size was determined using Slovin’s 
formula (Solimun, 2017):

n = N/(1+N.e2)
n = 107/ (1+107.0.052 )
n = 84,5
Information:
n = sample size
N = total population
e = error that can be tolerated (error tolerance)

Out of the total population of 107 farmers 
in the four study areas, 85 usable questionnaires 
were collected and used in the analysis, with a 
confidence level of 95% and a significance level 
of 5%. Most farmers in East Java primarily 
depend on agriculture for their livelihood, 
with only a minority (20%) having other jobs 
as laborers, civil servants, or agricultural 
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extension workers. Despite this, a considerable 
number of farmers are well-educated, with 25% 
having completed undergraduate education. 
However, adoption of digital technology in 
agriculture remains low, with only 20% of the 
85 respondents expressing interest in adopting 
digital-based agricultural technology and the 
majority choosing to rarely or not adopt such 
technology due to its high cost. The study found 
that 95% of the respondents relied solely on 
private funds for initial capital and business 
development, while the rest mainly relied on 
joining farmers’ groups banks for support.

Measurement and Concept of Model
To assess the constructs in the research model, 
the researchers utilised measurements based on 
previous studies that had established reliability 
and validity. Specifically, the measurements 
for the relative advantage, complexity, and 
compatibility constructs of the technological 
dimension were adapted from a study by Oliveira 
et al. (2014). All items were evaluated using a 
five-point Likert scale, with responses ranging 
from “strongly disagree” to “strongly agree”. 
The conceptual framework included a specific 
construct number for all unobserved indicators.
In this study, hypothesis testing was conducted 
using the Warp-PLS 6.0 SEM (Structural 
Equation Model) software. The study utilized 
a specific conceptual framework consisting of 
exogenous latent variables and their manifest 
variables, which are described in Table 1. 
Additionally, Table 2 displays the endogenous 
latent variable and its manifest variables. Figure 
1 presents the appropriate structural model for 
this research.

The SEM approach of partial least squares 
(PLS) was used to validate the research model. 
PLS is a component-based approach for 
estimation and places minimal restrictions on 
sample size and residual distributions. It is also 
best suited for analysing complex models with 
latent variables (Pavlou et al., 2007).

Results and Discussion
Description of Technology Adoption by Farmer
Soil Fertiliser Technology 
In terms of soil fertiliser technology adoption, 
only 14% of farmers have chosen to use this 
digital technology to increase productivity, with 
51% of them have adopted it, while the rest 
choose to adopt it rarely or sometimes. There are 
several factors that influence farmers’ choices in 
soil fertiliser technology, including the use of new 
superior varieties, location-specific fertilisation, 
balanced use of inorganic and organic fertilisers, 
soil fertility testing, conservation technology 
for land, and autonomous technologies such 
as tractors, fertiliser scattering drones, seed 
scattering drones, and robots. Further analysis 
of the methods used in soil fertiliser technology 
revealed that 29% of farmers chose to use new 
superior varieties and location-specific balanced 
fertilisation technology, while 9% chose to use 
location-specific nutrient fertilizers. The use of 
other digital technologies was also observed, 
with minor use of soil conservation technologies. 

Water-saving Irrigation Technology
The second type of digital technology is water-
saving irrigation technology. Water-efficient 
irrigation can increase irrigation sailing, 
the planting index, and the planted area to 
increase agricultural production. However, 
the development of water-efficient irrigation 
is hindered by various management issues, 
including the maintenance of water infrastructure 
buildings and water resources, and the problem of 
water utilisation and distribution. Water-efficient 
irrigation technology is based on the principle 
of providing irrigation based on the minimum 
water requirement of the soil. As a result, plants 
are irrigated with only the minimum amount 
of water they need, which is lower than their 
usual requirements. The development of water-
efficient irrigation technology faces challenges 
related to cross-regional water sources, which 
require appropriate solutions. Additionally, 
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Table 1: Exogenous latent variable and manifest variable

ST Soil Fertiliser 
Technology WT Water-saving 

Technology GT Green 
Technology MT Digital Marketing 

Technology
S1 New superior 

varieties
W1 Drip irrigation 

technology
G1 Use of organic 

fertiliser
D1 Marketing agricultural 

products through social 
media

S2 Site-specific 
nutrient 

fertilisation

W2 Water harvesting G2 Waste-free 
livestock crop 

integration system

D2 Monitoring prices of 
agricultural products

S3 Balanced 
fertilisation 
technology

W3 Pipeline 
irrigation 
network 

technology

G3 Integrated OPT 
(plant-disturbing 

organisms) control

D3 Sales of agricultural 
products through an 
online shop platform

S4 Soil test 
technology

W4 Automatic 
irrigation system 

technology

G4 Diversify crops D4 Funding through the 
platform

S5 Soil 
conservation 
technology

D5 Purchase agricultural 
equipment and needs 
through mass media or 
online

S6 Autonomous 
tractor 

technology

D6 Consultations with 
experts online

D7 Selling agricultural 
products to middlemen

D8 Use of computers/
laptops to access 
information related to 
agriculture

Table 2: Endogenous latent variables and manifestations

KT Farmer knowledge BR Farmer behaviour
K1 Knowledge of agricultural innovation B1 Greenhouse
K2 Knowledge of agriculture technology B2 Manufacture of organic fertiliser
K3 Government programmes related to agricultural 

development
B3 Product packaging variations

K4 Access to information increases agricultural 
productivity

B4 Product agriculture processing

K5 Adopt advanced technology with high cost B5 Integrated crop management field 
training

K6 Knowledge of innovation for both production and 
sales

B6 Integrated pest control field 
training

K7 Participation in agricultural training
K8 The use of technology using smartphones, 

agricultural fertilisers, planting technology
K9 Knowledge of technology use
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Figure 1: Structural model of farmer’s technology adoption

Description: 

1. Direct Effect
 KT (Farmer knowledge)  → MT (Digital marketing technology)
 KT (Farmer knowledge)  → ST (Soil fertiliser technology)
 KT (Farmer knowledge)  → WT (Water-saving technology)
 KT (Farmer knowledge)  → GT (Green technology) 

2. Indirect Effect
 KT (Farmer knowledge)  →  BR (Farmer behaviour) →   MT (Digital marketing technology)
 KT (Farmer knowledge)  → BR (Farmer behaviour) →   ST (Soil fertiliser technology)
 KT (Farmer knowledge)  → BR (Farmer behaviour) →   WT (Water-saving technology)
 KT (Farmer knowledge)  → BR (Farmer behaviour) →   GT (Green technology)

maintenance of water infrastructure buildings 
and resources necessitates mutual attention. 
Therefore, establishing new farmer institutions 
to regulate irrigation water use, maintain 
water infrastructure and resources, and prevent 
conflicts of water use during crop production is 
necessary. As for the adoption of water-saving 
irrigation technology, only 19.7% of farmers 
often or very often use it, while 65% choose not 
to use it.  Water-saving irrigation technology 
that is widely used includes water harvesting 
through infiltration channels, vertical mulch, 
reservoirs, intermittent irrigation, and drainage 

systems. Drip and automatic irrigation are used 
by at least 4% of farmers.

Green Technology
In the realm of agriculture technology, 
digitalization has enabled the use of fertilisers 
as a means of enhancing crop productivity. 
Digitization through fertiliser aims to control 
soil fertility levels with the help of organic 
and inorganic fertilisers. In the era of green 
technology, fertilisation is based on increasing 
the energy mix of new and renewable energy 
by 10 GW, consisting of 6 GW of gas-based 
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energy, 3 GW of renewable energy, and 1 GW 
of new energy, in which includes hydrogen. The 
success of increasing the productivity of food 
crops followed by environmental sustainability 
is the principle of applying a sustainable, 
environmentally friendly agricultural system. 

This initiative aims to increase the 
productivity of food crops while promoting 
environmental sustainability through the 
application of a sustainable and eco-friendly 
agricultural system.

To achieve this goal, various ecologically-
friendly farming systems have been developed 
based on good agricultural practices that 
synergize technological components such 
as integrated crop management, waste-
free crop-livestock integration systems, and 
integrated pest management. The integration 
of these technologies promotes food crop 
productivity, maintains soil quality, and reduces 
greenhouse gas emissions, all while ensuring 
the sustainability of the agricultural system. 
The choice of farmers in East Java in the use 
of green technology can be represented by 
41.76%, which is an excellent result compared 
to previous agricultural technologies. 

This can be attributed to the fact that 
farmers have widely adopted environmentally 
friendly farming systems without even realizing 
it. They undertake various ecologically friendly 
agricultural operational activities, such as (i) 
using highly efficient inorganic fertilisers to 
achieve optimal yield targets; (ii) applying pest 
and disease control while paying attention to 
the natural ecological balance; (iii) utilising 
integrated crop management; (iv) practising 
clean and healthy farming systems; (v) 
maintaining and stabilising physical, chemical, 
and biological fertility of the soil; and, (vi) 
effectively using technology based on local 
wisdom.

Digital Marketing Technology
One of the forms of agricultural digitalisation 
measured in this study is the sales or purchases 
of farmers through digital marketing technology. 
The agricultural product marketing system often 

faces inefficiencies due to weak infrastructure 
and market information, relatively small 
agricultural scale, lack of knowledge from 
marketers on grading and handling, high 
transaction costs, and lack of good marketing 
policies. To overcome these issues, farmers must 
be aware of the agricultural product marketing 
system from the procurement of raw materials 
(inputs) to the marketing of farm products. 

In addition, online marketing (digital 
marketing) can be used as an alternative 
to convey information on developments in 
agriculture. It can create a more effective 
and efficient sales system, but only 15% of 
farmers use digital marketing technology, while 
66.45% do not. The majority of farmers still 
sell agricultural products to middlemen (67%), 
and 85 respondents still do not use agricultural 
platforms for sales. Only 2% of farmers buy farm 
equipment and necessities through mass media 
or online. Given these findings, researchers must 
provide socialisation and assistance in handling 
and packaging agricultural products to increase 
their added value and selling prices. Farmers 
should also be equipped with online agricultural 
product marketing activities, such as selling 
online on social media, to increase efficiency 
and effectiveness.

Analysis Data
The PLS-SEM model consists of two-phase 
analytical approaches, i.e. measurement (outer 
component) and structural model (inner part). 
The measurement frameworks provide the 
multidirectional statistical association for each 
endogenous structure and its observed response 
variable. PLS-SEM is capable of handling 
either formative or reflective measuring styles. 
Reflective measures are employed to represent 
the inherent properties of the structure and 
changes within the structural model, which 
are indicated by variations in the predictor 
(transcend) parameters. The reflective indicators 
in this study were represented by single-headed 
arrows pointing from the latent construct to the 
indicator variables. The coefficients associated 
with these relationships are known as external 
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loads in PLS-SEM. This study utilised reflective 
measurement models. In contrast, formative 
indicators are believed to form or shape a 
latent variable, and changes in the factors that 
contribute to the formation of the latent variable 
can impact its level. (Jr. et al., 2014).

Evaluation of the Measurement Model (Outer 
Model) 
The first step taken in analysing the research 
results is evaluating the measurement model 
to determine the relationship between latent 

variables and their indicators with the following 
explanation:

Convergent Validity Indicator Construct
The convergent validity of the measurement 
model can be seen from the correlation between 
the indicator and construct scores (loading 
factor), with the criteria for a loading factor 
value for each indicator being greater than 0.7, 
which can be said to be valid. However, a value 
greater than 0.5–0.6 can already be said to be 
valid (Latan & Ghozali, 2012). 

Table 3: Convergent validity indicator construct

No. Indicator Loading 
Value Standard Error P value Description

1 S1 0.72 0.088 <0.001 Acceptable of convergent validity

2 S2 0.797 0.086 <0.001 Acceptable of convergent validity

3 S3 0.781 0.086 <0.001 Acceptable of convergent validity

4 S4 0.618 0.09 <0.001 Acceptable of convergent validity

5 S5 0.593 0.091 <0.001 Acceptable of convergent validity

6 S6 0.486 0.094 <0.001 Acceptable of convergent validity

No. Indicator Loading 
Value Standard Error P value Description

1 W1 0.85 0.084 <0.001 Acceptable of convergent validity

2 W2 0.773 0.086 <0.001 Acceptable of convergent validity

3 W3 0.848 0.084 <0.001 Acceptable of convergent validity

4 W4 0.428 0.096 <0.001 Acceptable of convergent validity

No. Indicator Loading 
Value Standard Error P value Description

1 G1 0.746 0.087 <0.001 Acceptable of convergent validity

2 G2 0.595 0.091 <0.001 Acceptable of convergent validity

3 G3 0.559 0.092 <0.001 Acceptable of convergent validity

4 G4 0.72 0.088 <0.001 Acceptable of convergent validity

No. Indicator Loading 
Value Standard Error P value Description

1 B1 0.863 0.084 <0.001 Acceptable of convergent validity

2 B2 0.698 0.088 <0.001 Acceptable of convergent validity

3 B3 0.866 0.084 <0.001 Acceptable of convergent validity

4 B4 0.853 0.084 <0.001 Acceptable of convergent validity

5 B5 0.697 0.088 <0.001 Acceptable of convergent validity

6 B6 0.734 0.087 <0.001 Acceptable of convergent validity
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Apart from examining the cross-loadings 
of the constructs, the convergent validity of a 
model can also be evaluated using the Average 
Variance Extracted (AVE) value of the latent 
variables. A commonly accepted criterion for 
AVE is that it should be greater than 0.5 to 
indicate good convergent validity (Solimun et 
al., 2017). The AVE value of each variable in 
this study is presented in Table 4. The results 
of the construct used in this study indicate that 
the AVE value of all constructs has a value 
greater than 0.5. Based on these results, it can be 
concluded that the variables used in this study 
have met convergent validity.

Discriminant Validity
The criterion of discriminant validity is 
indicated by more AVE square roots greater 
than the correlation coefficient between the 
constructs in each column Discriminant validity 
can be assessed from the cross-loading value of 
the construct measurement. If the construct’s 
correlation with each indicator is greater than the 
construct’s size with the other, then the indicator 
is predicted to be better than the other construct. 
An presentation of discriminant validity on cross 
scores loading can be seen in Table 5.

No. Indicator Loading 
Value Standard Error P value Description

1 D1 0.753 0.087 <0.001 Acceptable of convergent validity

2 D2 0.528 0.093 <0.001 Acceptable of convergent validity

3 D3 0.667 0.089 <0.001 Acceptable of convergent validity

4 D4 0.51 0.093 <0.001 Acceptable of convergent validity

5 D5 0.765 0.087 <0.001 Acceptable of convergent validity

6 D6 0.396 0.097 <0.001 Acceptable of convergent validity

7 D7 -0.283 0.1 0.003 Not Acceptable of convergent 
validity

8 D8 0.576 0.092 <0.001 Acceptable of convergent validity

No. Indicator Loading 
Value

Standard Error P value Description

1 K1 -0.082 0.106 0.221 Not Acceptable of convergent 
validity

2 K2 0.386 0.097 <0.001 Acceptable of convergent validity

3 K3 0.734 0.087 <0.001 Acceptable of convergent validity

4 K4 0.33 0.098 <0.001 Acceptable of convergent validity

5 K5 0.72 0.088 <0.001 Acceptable of convergent validity

6 K6 0.544 0.092 <0.001 Acceptable of convergent validity

7 K7 0.578 0.091 <0.001 Acceptable of convergent validity

8 K8 0.517 0.093 <0.001 Acceptable of convergent validity

9 K9 0.715 0.088 <0.001 Acceptable of convergent validity

10 K10 -0.068 0.106 0.263 Not Acceptable of convergent 
validity

Source: Output result of WarpPLS 6.0 processed by the author (2022)
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Table 5: Discriminant validity on cross scores loading

ST WT GT MT BR KT SE P value

S1 -0.65 -0.356 -0.004 0.343 0.271 -0.043 0.1 0.005

S2 -0.695 -0.135 0.356 0.042 0.163 -0.293 0.1 0.002

S3 0.709 -0.173 0.357 -0.123 0.04 -0.121 0.1 0.003

S4 0.7 0.317 -0.353 -0.235 -0.016 0.19 0.101 0.014

S5 0.669 0.434 -0.314 -0.052 -0.337 0.197 0.102 0.018

S6 0.756 0.047 -0.253 -0.065 -0.312 0.242 0.103 0.044

W1 -0.025 0.784 0.191 -0.001 -0.123 0.065 0.097 <0.001

W2 0.299 0.864 -0.257 -0.132 0.282 -0.332 0.098 <0.001

W3 -0.444 0.885 0.293 -0.115 -0.005 0.137 0.097 <0.001

W4 0.489 0.63 -0.514 0.535 -0.332 0.223 0.102 0.032

G1 0.392 -0.172 0.713 0.075 0.159 -0.383 0.096 <0.001

G2 -0.332 0.298 0.706 -0.378 -0.214 0.305 0.098 <0.001

G3 0.098 -0.427 0.734 0.282 -0.037 -0.122 0.099 <0.001

G4 -0.182 0.265 0.657 0.103 0.102 0.227 0.096 <0.001

D1 0.254 -0.186 -0.156 0.95 -0.255 0.097 0.1 0.003

D2 -0.056 0.204 0.048 0.849 -0.179 0.19 0.102 0.03

D3 -0.008 -0.029 0.167 0.91 0.361 -0.514 0.101 0.008

D4 -0.597 0.338 0.332 0.866 0.133 -0.212 0.103 0.035

D5 0.493 -0.182 -0.218 0.873 -0.015 -0.079 0.1 0.003

D6 -0.166 -0.243 0.69 0.479 -0.161 0.32 0.104 0.08

D7 0.074 -0.088 0.796 -0.537 0.149 -0.389 0.105 0.163

D8 -0.538 0.391 -0.081 0.828 0.182 0.294 0.102 0.02

B1 -0.049 -0.051 0.148 0.202 0.738 0.121 0.101 0.013

B2 -0.038 0.311 -0.111 -0.232 0.845 -0.158 0.103 0.036

B3 0.26 -0.131 0.075 -0.005 0.748 -0.147 0.101 0.012

B4 -0.083 -0.103 -0.027 0.119 0.809 0.123 0.101 0.013

B5 -0.027 0.182 -0.234 -0.254 0.869 -0.004 0.103 0.036

Table 4: The AVE value of variables

No. Variable AVE Value Decription
1 ST 0.675 Acceptable of convergent validity
2 WT 0.745 Acceptable of convergent validity
3 GT 0.66 Acceptable of convergent validity
4 MT 0.581 Acceptable of convergent validity
5 BR 0.789 Acceptable of convergent validity
6 KT 0.523 Acceptable of convergent validity

     Source: Output result of WarpPLS 6.0 processed by the author (2022)
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Based on the data, it can be concluded 
that only a few constructs meet the criteria 
of discriminant validity, in which all latent 
constructs predict their indicators are greater 
than other indicators.

Composite Reliability and Cronbac’s Alpha
Composite reliability testing is a statistical 
test used to assess the internal consistency 
and reliability of a set of measures or items 
within a research instrument Outputs are used 
to determine the reliability of data, that is the 
composite reliability and Cronbach’s alpha  
must be both be greater than 0.70 to indicate 
reliability (Sholihin, 2013). The value of 
composite reliability and Cronbach’s alpha for 
this study can be seen in Table 6. From these 
results, it can be concluded that each construct 
has a high-reliability value. It can be seen that 
the value of composite reliability is greater than 

0.70 and Cronbach’s alpha in each construct is 
greater than 0.50.

Evaluation of the Structural Model (Inner 
Model)
After testing the evaluation of the measurement 
model (outer model), where convergent validity, 
discriminant validity, composite reliability and 
Cronbach’s alpha have met the requirements, 
the next stage involves the evaluation of the 
structural model (inner model), which includes 
the model fit test  and R2. The model fit test is 
used to determine which model used matches 
the data. In a model fit test, there are 10 test 
indices (Solimun et al., 2017). Results Output 
models fit indices in this study can be seen in 
Table 7. The results of the output model fit 
indices in this study are presented in Table 7. 
Based on the results of testing the fit and quality 
indices model, it can be seen that all criteria have 

B6 -0.139 -0.195 0.144 0.174 0.802 0.103 0.102 0.029

K1 0.158 0.03 -0.483 0.85 -0.12 -0.178 0.108 0.393

K2 -0.152 0.427 -0.394 -0.152 -0.042 0.83 0.104 0.089

K3 -0.032 -0.273 0.233 -0.058 -0.274 0.812 0.1 0.005

K4 -0.395 0.235 -0.197 0.383 0.067 0.703 0.105 0.125

K5 0.17 0.096 -0.267 -0.02 -0.283 0.825 0.1 0.005

K6 -0.202 -0.048 0.544 0.351 0.033 0.646 0.102 0.027

K7 -0.281 -0.305 0.469 0.059 -0.148 0.791 0.102 0.021

K8 0.13 -0.185 -0.389 0.115 0.718 0.672 0.103 0.034

K9 0.246 0.435 -0.198 -0.222 0.484 0.626 0.1 0.005

K10 -0.852 0.289 0.384 -0.167 0.094 -0.175 0.108 0.409

Source: Output result of WarpPLS 6.0 processed by the author (2022)

Table 6: Values of composite reliability and Cronbach’s alpha

ST WT GT MT BR KT Description

Composite reliability 
coefficients 0.83 0.825 0.752 0.743 0.907 0.725 Acceptable

Cronbach’s alpha 
coefficients 0.753 0.712 0.56 0.62 0.876 0.608 Acceptable

Source: Output result of WarpPLS 6.0 processed by the author (2022)
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been met, indicating that the model generated 
from WarpPLS 6.0 is appropriate for use. The 
structural model in WarpPLS 6.0 was evaluated 
using R2 for the mediating variable and the 
dependent variable, path coefficient value, and 
p-value to test the significance of the variables 
in the model.

Results of Influence Analysis between Variables
Overall, this research model is divided into two 
effects namely direct influence and indirect 
influence. Great influence can be seen directly 
in Figure 2 research model; while big indirect 
effect and total effect can be seen in the WarpPLS 
Output 6.0 Indirect Total Effect described in 
Table 8.

Based on the results shown in Figure 2, 
it can be observed that the P-Value output of 
the direct effect on the variables of farmer’s 

knowledge of Green Technology (GT), 
Digital Marketing Technology (MT), Soil 
Fertiliser Technology (ST), and Water-Saving 
Technology (WT) indicates a significant value 
(below alpha 0.05). Additionally, the original 
sample estimate of the knowledge variables to 
ST, WT, GT, and MT exhibits a positive value 
of 0.42, 0.27, 0.29, and 0.18, respectively. 
The results in Table 8 show the variable BR 
cannot strengthen the relationship between KT 
to ST and WT. The variable BR, however, can 
strengthen the relationship between KT to GT 
and MT, but changing it does not resolve the 
direct relationship between KT to GT and MT 
based on the direct and indirect comparison 
coefficients on GT (0.29 > 0.115) and on MT 
(0.18 > 0.099) to be partial mediation variables.

Farmers’ knowledge related to agricultural 
technology influences farmers’ decisions to 

Table 7: Results of the output models

No. Model fit and quality 
indices Result Criteria Description

1 Average Path Coefficient 
(APC) 0.243

P=0.005 P <0.05 Good
2 Average R-square (ARS) 0.177

P=0.022 P <0.05 Good

3 Average adjusted R-square 
(AARS)i 0.158

P=0.032 P <0.05 Good
4 Average blok VIF (AVIF) 1.391 acceptable if <= 5, ideally <= 3.3 Ideal

5 Average full collinearity 
VIF (AFVIF) 1.712 acceptable if <= 5, ideally <= 3.3 Ideal

6 Tenenhaus GoF (GoF) 0.281 small >= 0.1, medium >= 0.25, large >= 
0.36 Ideal

7 Sympson’s paradox ratio 
(SPR) 0.889 acceptable if >= 0.7, ideally = 1 Acceptable

8 R-squared contribution ratio 
(RSCR) 0.999 acceptable if >= 0.9, ideally = 1 Acceptable

9 Statistical suppression ratio 
(SSR) 1 acceptable if >= 0.7 Acceptable

10 Nonlinear bivariate causality 
direction ratio (NLBCDR) 0.833 acceptable if >= 0.7 Acceptable

Source: Output result of WarpPLS 6.0 processed by the author (2022)



Bunga Hidayati et al.   184

Journal of Sustainability Science and Management Volume 18 Number 4, April 2023: 172-190

adopt “soil fertiliser technology” technology. 
However, if this knowledge is mediated by 
variables related to farmers’ behavior, then it 
may not have a significant effect. This suggests 
that the behaviour of farmers, as indicated by 
variables such as greenhouse usage, organic 
fertiliser manufacturing, product packaging 
variation, agricultural product processing, 
integrated crop management field training, and 
integrated pest control field training, plays a 
crucial role in determining the effectiveness 
of knowledge in promoting the adoption of 
agricultural technology.In the first set of results, 

it can be observed that the variable GT has the 
highest total effect value with a coefficient value 
of 0.40, followed by MT with a value of 0.27. 

On the other hand, the variables ST and 
WT show no significant total effect. In the 
second set of results, the variable ST exhibits 
the highest coefficient value on the direct 
effect, which is 0.42, followed by WT with 
a value of 0.27. These findings indicate that, 
based on farmer knowledge reinforced by their 
behaviour, farmers are more likely to adopt 
Green Technology (GT) and Digital Marketing 

Figure 2: The direct, indirect, and total effects

Table 8: The direct, indirect, and total effects

Variables Direct Effect 
(DE) Indirect Effect (IE) Total Effect (TE)

β p β p-value

ST 0.42* P<0.01 0.07 x 0.55 =0.030 0.25 0.45

WT 0.27* P<0.01 -0.01 x 0.55=-0.005 0.47 0.27

GT 0.29* P<0.01 0.21 x 0.55=0.115* P<0.01 0.40*

MT 0.18* 0.04 0.18 x 0.55=0.099* P<0.01 0.27*

*significant level 5%
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Technology (MT). However, when considering 
knowledge alone without mediation by farmer 
behaviour, farmers tend to adopt Soil Fertiliser 
Technology (ST) and water-saving technology 
(WT).

Discussion
Direct Effect of Knowledge on Soil Technology
Based on the analysis of direct influence, it can 
be concluded that the knowledge variable has a 
significant positive impact (0.42). This suggests 
that the knowledge possessed by farmers 
significantly influences the soil technology 
adopted. The technology that is widely adopted 
by farmers in East Java is the new superior 
varieties and location-specific balanced 
fertilisation technology. The coefficient value 
for soil technology adoption is higher than 
that of other technologies because traditional 
farming uses soil as a planting medium and the 
average farmer has over 10 years of farming 
experience. 

According to the social information 
processing theory, farmers use their experience 
to comprehensively analyse and evaluate 
information by gathering relevant environmental 
information and adjusting their behaviour 
and decisions accordingly (Braithwaite & 
Schrodt, 2014). Thus, the experience of farmers 
in providing balanced fertilisation and soil 
fertility processing methods makes it easier 
for them. Hidayati et al. (2019) also found that 
farmers with more farming experience tend to 
be more efficient than inexperienced farmers. 
Furthermore, farmers in East Java use tractors, 
including two-wheeled tractors, which makes it 
easier for them to adopt soil technology.

Direct Effect of Knowledge on Water 
Technology
The direct effect analysis results indicate 
that the knowledge variable has a positive 
and significant impact on water technology 
adoption, with a coefficient value of 0.27. This 
finding is consistent with the research sample 
data, which shows that 65% of farmers who use 

traditional irrigation systems do not adopt water-
saving irrigation technology. The reasons for 
this are influenced by social and demographic 
factors, as Kalirajan (1991) suggests that socio-
economic attributes indirectly affect production. 
Additionally, socio-economic variables have a 
significant impact on farm size and experience, 
as noted by Hidayati et al. (2019).

Castillo et al. (2021) found that social 
capital can trigger the adoption of water-saving 
irrigation technology by increasing social 
pressure, strengthening farmers’ self-confidence, 
and influencing farmer associations’ core 
beliefs related to water conservation awareness. 
Moreover, increasing farmers’ trust in water 
organizations can encourage cooperation, which 
can lead to the adoption of pressurized irrigation 
systems as the norm, as suggested by Klockner 
(2013).

Interestingly, other studies have shown that 
the cost of water does not affect adoption, as the 
payment is independent of water consumption. 
Additionally, farm size has a positive and 
significant influence on irrigation technology 
adoption, indicating that larger farmers are more 
likely to adopt due to economies of scale and 
greater capacity to bear risks (Diederen et al., 
2003).

Direct Effect of Knowledge on Green 
Technology
The results suggest that the knowledge variable 
has a significant and positive influence on the 
adoption of green technology, with a coefficient 
value of 0.29. This finding indicates that farmers’ 
level of knowledge impacts the adoption of 
green technology, as evidenced by the 41.76% 
adoption rate of technologies such as organic 
fertiliser, waste-free livestock crop integration 
systems, integrated plant-disturbing organism 
control, and diversified crops. However, adopting 
agricultural green production technology can be 
time-consuming and challenging, and some new 
generations of farmers may be hesitant to adopt 
such technology if government incentives or 
subsidies are insufficient to offset the expected 
costs and benefits (Pannell et al., 2016).
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This result contrasts with the findings of 
Guo (2022), who argued that the new generation 
of farmers is more open to new ideas than 
older generations, and that the perception of 
environmental settings has a greater impact on 
their adoption of agricultural green production 
technology. Guo et al. (2022) further stated 
that the impact of social capital, including 
both embedded and disembedded, has a 
significant influence on promoting the adoption 
of agricultural green production technology 
among both old and new generations of farmers. 
Nevertheless, compared with older generations 
of farmers, the new generation may be more 
influenced by social capital, and it may have 
a more significant impact on their decision-
making regarding green production.

In contrast, older farmers with non-
entrenched social capital may expand their 
social circle, but they are also more vulnerable 
to the influence of surrounding green production 
farmers, which can lead to a “herding effect”. 
Therefore, the older generation of farmers’ 
decision-making regarding green production 
may be more influential than that of the new 
generation.

Direct Effect of Knowledge on Digital 
Marketing Technology
The variable “knowledge of digital marketing 
technology” has the lowest coefficient value 
(0.18) compared with technology adoption in 
soil, water, and green technology. The age factor 
of farmers, particularly those above 45 years 
old, suggests that less productive farmers may 
not be familiar with recent digital technology 
developments such as social media or e-commerce 
sales. Based on the results of PLS analysis, 
questions with a significance value below 0.05 
include marketing agricultural products through 
social media, monitoring prices of agricultural 
products, selling agricultural products through 
online platforms, funding through online 
platforms, purchasing agricultural equipment 
and supplies through mass media or online, and 
consulting with experts online, as well as using 
computers or laptops to access information 

related to agriculture. Questions related to 
“selling agricultural products to middlemen” 
have a probability value above 0.05, which is 
likely due to the fact that the average farmer 
in East Java sells their products directly to 
traditional markets, as most agriculture in this 
area is still on a small scale with an average 
land area of fewer than 5 hectares. The results 
of this study are consistent with those of Gao 
et al. (2020), which indicate that the failure of 
farmers to adopt digital agriculture could lead to 
unsustainable agriculture. However, differences 
in agricultural scale (small vs. large farmers) 
could also affect the adoption of other digital 
technologies. Nevertheless, according to World 
Bank data, farmers generally have limited 
access to technology, knowledge, and financial 
resources (World Bank, 2017).

Variable Knowledge mediated by farmers’ 
behaviour towards soil technology, water 
technology, green technology, and digital 
marketing technology
The first finding suggests that, in the absence 
of farmer behaviour, the variable ST has the 
strongest direct effect with a coefficient value 
of 0.42, followed by WT with a coefficient 
value of 0.27. These findings support Bandura’s 
(1977) theory of “social learning”, which 
suggests that farmers’ attitudes towards 
technological innovation can be influenced by 
the natural environment and agro-ecosystems. 
Farmers who possess knowledge influenced 
by social learning within their agro system and 
environmental conditions tend to adopt soil 
fertilization and water-saving technologies. 
This is consistent with the findings of Wu et 
al. (2022), which show that the geographical 
location of households has a significant positive 
impact on the positive social learning of farmers. 
Wu et al. (2022) also found that social learning 
can significantly influence farmers’ technology 
learning and adoption behaviour of soil testing 
technology and formula fertilization technology, 
indicating that positive social learning increases 
the possibility of soil testing and formula 
fertilization technology diffusion.
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Based on the insignificant total effect of 
soil technology and water technology variables, 
it can be concluded that different farmers have 
different regulatory environments due to their 
varying endowments, such as their level of 
knowledge, social experience, and information-
gathering ability. The findings of this study 
are consistent with those of Gao et al. (2020), 
who demonstrated the risk of unsustainable 
agriculture when farmers fail to adopt digital 
agriculture, particularly in the context of 
differences in agricultural scale. Moreover, rural 
areas should be viewed as a “relational” society 
where social capital is an essential complement 
to the formal system, thus influencing farmers’ 
perceptions of their environmental settings. 
However, World Bank data reveals that farmers 
have limited access to technology, restricted 
knowledge, and insufficient financial resources 
(World Bank, 2017). Furthermore, small-
scale farmers are often slower to adopt new 
technologies.

The second finding revealed that based 
on farmer knowledge, which is reinforced by 
farmer behaviour, farmers are more likely to 
adopt technologies related to green technology 
(GT) and digital marketing technology (MT).  
According to the total effect, the variable GT 
has the highest total effect value with a total 
coefficient value of 0.40. This suggests that 
farmers who have implemented some or all of 
the modern agricultural behaviours, as indicated 
by greenhouses, organic fertiliser production, 
packaging variations, processing of agricultural 
products, integrated crop management field 
training, and integrated pest control field 
training, are more likely to choose to use 
green technology (GT) and digital marketing 
technology (MT). This finding is consistent with 
the idea that farmers who have already adopted 
some modern agricultural practices are more 
open to further technological innovation and are 
better equipped to integrate new technologies 
into their operations.

The comparison of research results with 
social learning theory highlights the addition 
of exogenous technological dimensions and 

the expansion of endogenous technologies’ 
application, where farmers’ attitudes towards 
technological innovation can be influenced 
by natural environmental conditions and 
agroecosystems. These findings are consistent 
with the research conducted by Wu et al. 
(2022), which demonstrated the significance of 
positive social learning in the adoption of soil 
testing and formula fertilization technology. Wu 
et al. (2022) also showed that social learning 
can significantly influence farmer technology 
learning and adoption behaviour. It is possible 
that external reinforcement of soil testing and 
formula fertilization technology encourages 
farmer social learning. Furthermore, the 
geographic location of households was found 
to have a significant positive impact on social 
learning and its effects on farmers.

The results of the research expand the 
validity of the social capital theory pioneered 
by Bourdieu (2011) and developed by Coleman 
(1988) and Putnam (1992), namely the 
concept of social networks, norms, and beliefs. 
Theoretically, social capital can help farmers 
gather information, exchange technology and 
raise funds, effectively compensating for the 
shortcomings of the formal sector. On the other 
hand, a comparison between the results of the 
study and the theory of planned behaviour suggest 
that social and institutional conditions greatly 
influence technology adoption. Therefore, 
it is crucial to consider local knowledge 
and its application when training farmers 
on new technologies to increase community 
participation in mechanisation (Kuntariningsih, 
2014). It is important to note that farmers have 
varying regulatory environments depending 
on their level of knowledge, social experience, 
information acquisition ability, among other 
things (Barnes et al., 2015).

Thus, this research intersects three theories: 
Social learning theory, social capital theory, 
and planned behaviour theory to explain 
farmer preferences in adopting each technology 
based on their knowledge and behaviour. As a 
result, the government should concentrate on 
transferring knowledge and information through 
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social networks to promote action and boost 
farmers’ confidence in meeting technological 
advancements in agriculture. This will aid in 
the shift from traditional farming practices to 
utilising technology to improve efficiency and 
ultimately enhance the welfare of farmers.

Conclusion
The adoption of agricultural technology is 
crucial for enhancing the efficiency of farmers, 
but its implementation has faced challenges. 
Based on the findings of this research, it can 
be concluded that farmer knowledge, when 
reinforced by behaviour, results in a preference 
for green technology and digital marketing 
technology. Conversely, when knowledge is 
not mediated by behaviour, farmers tend to 
adopt soil fertiliser technology and water-
saving technology. To facilitate the adoption of 
technology, the government can help upgrade 
farmers’ knowledge and encourage modern 
farming behaviour. However, this study has 
some limitations, such as its focus on specific 
areas in East Java province. Therefore, it is 
recommended to conduct further research 
in other regions of Indonesia to expand the 
understanding of the factors affecting technology 
adoption among farmers.
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