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Introduction 
Energy is the basis of sustainable development. 
Currently, most human activities are supported 
by fossil fuels (Ucal & Xydis, 2020). This 
indirectly causes fossil fuels to become a primary 
human need. Energy demands will continue 
to increase every year while the availability of 
fossil fuels is limited. In addition, the ongoing 
use of fossil fuels is not sustainable due to 
greenhouse gas emissions generated by the use 
of said fossil fuels as a power source (Dominic 
et al., 2019). Waste management and replacing 
non-renewable fossil fuels with something 
more sustainable are universal issues affecting 
communities and the environment. Poorly 
managed waste contaminates the environment, 
and endangers human and animal health (Munir 
et al., 2021). So, an adequately managed waste 
that produces renewable energy for a sustainable 
future is essential.

The rising population and global economic 
development have caused food waste generation 
to increase dramatically. The Food and 
Agriculture Organization (FAO) data from the 
United Nations showed that more than one-third 
of food is wasted worldwide (Chinie, 2020). In 
most countries, food waste is taken to a landfill 
or incinerated. However, different researchers 
criticise these methods for their negative 
side effects. For example, land availability 
limitations, toxins, leachate, and greenhouse 
gases are the main problems for landfills. On 
the other hand, high energy costs and hazardous 
gases are associated with incineration (Istrate et 
al., 2021). Although Anaerobic Digestion (AD) 
of food waste has received attention as a long-
term solution for food waste management for 
biogas production (Yin et al., 2016), different 
researchers revealed that this method has 
many problems. Firstly large sludge, due to 
the inefficient and slow microbial pathways. 
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Secondly, AD has a long solid retention time 
and complex process configuration. In addition, 
there is a low conversion efficiency of methane 
to electricity (Khan et al., 2017). All of the 
methods above do not offer a solution for 
food waste management. There is a need for 
technology to remove the organic pollutants in 
food waste while producing renewable energy 
since there is a growing demand for energy. 
Microbial Fuel Cells (MFCs) seem to be a new 
technology to produce value-added products 
from FW and reduce environmental impacts.

Recently, researchers reported MFCs can 
directly convert chemical energy stored in 
organic substances to electricity through catalytic 
reactions of exoelectrogenic bacteria (Adekunle 
et al., 2019; Gul et al., 2021). MFC has attracted 
significant research interest due to its potential 
for generating energy in an environmentally 
sustainable manner. In MFCs, the biodegradation 
of organic matter and electron transfer efficiency 
determine the generation of bioelectric energy 
(Pepè Sciarria et al., 2019). The exoelectrogenic 
bacteria are essential in MFC to remove 
pollutants while producing electrical energy 
(James et al., 2020). Researchers revealed that 
the mixture of exoelectrogenic bacteria might 
boost electricity production (Gul et al., 2021). 
In this research, we used Shewanella oneidensis 
MR-1, an exoelectrogenic bacteria with high 
productivity (Bai et al., 2021) and Sidoarjo 
mud containing bacteria that might play a key 
role in MFC electron transfer (Darmawan et 
al., 2017). Sidoarjo mud flow is due to the mud 
volcano eruption in May 2016 in Sidoarjo, East 
Java, Indonesia. It consists of 70% solids and 
30% water, with a 32%-40% salinity, pH 6.6-
7, Cation Exchange Capacity (CEC) 3.89-35.42 
(meq/100g), and total organic carbon 54.75%-
55.47% (Purnomo & Rachmadiarti, 2018).

The performance of MFC in producing 
electrical energy is not only influenced by the 
types of exoelectrogenic bacteria used. There 
are other several factors such as the types of 
contaminants degraded (Kumar et al., 2019), 
types of the electrode (Jung & Pandit, 2018; 

Zhou et al., 2020), the types of configuration (Al 
Lawati et al., 2019) and the operating conditions 
of the MFC, including but not limited to pH, 
temperature, salinity, and shear stress (Gul et 
al., 2021). In this research, we used food waste 
from a restaurant. The FW from the restaurant 
contained high organic compounds such as 
starch, lipids, and proteins (Li et al., 2019) that 
might be used as a carbon source in MFC. 

However, pretreatment is required to use 
food waste as a substrate to produce value-added 
compounds (Ma et al., 2017a; Rajesh Banu et 
al., 2020). Different pretreatment methods are 
physical (Ariunbaatar et al., 2014), mechanical 
(Shanthi et al., 2018; 2019), physicochemical 
(Kavitha et al., 2017), chemical (Kannah et 
al., 2018), biological (Pleissner et al., 2014) or 
their combination was developed to enhance the 
hydrolysis of organic compounds in FW into 
simple monomers. In this research, we used 
biological pretreatment because it is eco-friendly 
and no undesirable byproducts are formed (Ma 
et al., 2017b; Zhang et al., 2020). Researchers 
revealed that a single enzyme treatment is less 
efficient than the treatment with a mixed enzyme 
(Kim et al., 2006). However, commercial 
enzymes are not cheap and exist in a single 
variety (Khulbe & Mugesh, 2019; Dudutienė 
et al., 2020). It was revealed that fungi rich in 
hydrolytic enzymes could significantly enhance 
the hydrolysis of food waste (Ma et al., 2017a). 
Therefore, fungi rich in hydrolytic enzymes 
(Moon & Song, 2011; Pleissner et al., 2014), 
namely Aspergillus aculeatus, Aspergillus 
oryzae and Candida rugosa at their log phases 
were used in this work. At log phases, the 
number of cells increased exponentially (Maier 
& Pepper, 2015) and is the healthiest (Division 
& Curve, 2021).

On the other hand, electrode materials play 
a significant role in MFC performance. Different 
materials may be used to make a perfect anode 
for MFCs, which require a large surface area 
to enhance the electron transfer rate. Anodic 
materials are also necessary because they 
help microbes to oxidise organic substrates by 



Simpliste Dusabe et al.   152

Journal of Sustainability Science and Management Volume 18 Number 7, July 2023: 150-165

increasing their metabolic rate (Srivastava et 
al., 2015). Since microorganisms significantly 
impact the power density produced in MFC, the 
appropriate anode materials must be selected. 
Carbon-based materials such as carbon cloth, 
felt, paper, brushes, and mesh are used as an 
electrode in MFC due to their cost effectiveness, 
good electron transfer kinetics, high chemical 
and mechanical stability, with high conductivity 
(Yaqoob et al., 2020). In this research, the 
authors used carbon cloth twill A 220 since it 
has several advantages. These include enormous 
porosity value, chemical and thermal stability, 
higher specific area, and mechanical strength 
with high electrical conductivity (Do et al., 
2018; Yaqoob & Rodríguez-Couto, 2020). 
Moreover, a Single Chamber Microbial Fuel 
Cell (SC-MFC) was used in this study. The 
electrodes are placed in the same compartments 
in SC-MFC configurations. They are both in a 
simple anode compartment with no definitive 
cathode compartment and no proton exchange 
membranes. This configuration has advantages 
such as low cost for construction, no need for 
membranes, low internal resistance, high power 
output, and ease of construction (Logroño et al., 
2017).

Previous researchers concentrated on 
eliminating organic contaminants in FW rather 
than extracting energy from them. Therefore, 
this study aimed to produce electricity from the 
organic compound in food waste by integrating 
hydrolysis and Microbial Fuel Cells (MFCs). 
After the blended FW had been separated into 
solids and liquids, hydrolytic fungi hydrolysed 
the liquid. Then, the hydrolysate was mixed 
with exoelectrogenic bacteria (bacteria in 
Sidoarjo mud and Shewanella oneidensis MR-
1) and fed to SC-MFC for energy production. 
In addition, pollutant removal (COD and BOD5) 
was discussed. The hydrolysis of food waste 
was investigated regarding maximal releases of 
glucose when only A. aculeatus, only A. oryzae 
ws, and only Candida rugosa were used and the 
mixture of all three fungi. 

Materials and Methods
Material
Materials used in this study are fungi (A. 
aculeatus, A. oryzae and Candida rugosa), food 
waste, Sidoarjo mud, Shewanella oneidensis 
MR-1, titanium wire, carbon cloth twill A 220 
and 3,5-dinitro salicylic acid (DNS). The fungi 
were purchased at Universitas Airlangga – 
Laboratory of Clinical Microbiology whereas 
FW was collected at Rumah Makan Asia Timur 
restaurant near Institut Teknologi Sepuluh 
Nopember (ITS). Sidoarjo mud was collected 
at a depth of between 25 cm and 40 cm below 
the outer surface of the ground at coordinates 
7o31’45.6 “S and 112o42’43.6” E in Porong, 
Sidoarjo, East Java. Titanium wire was bought at 
Nilaco (Tokyo, Japan) and carbon cloth twill A 
220 was purchased at Toko Ngagel Jaya Kimia. 
On the other hand, all the chemicals used in this 
research are from Merck (Darmstadt, Germany).

The MFCs Reactor
A single chamber microbial fuel cell (SC-MFC) 
made in PET bottles with a batch system was 
used in this study. The bottle has 8 cm and 20 
cm in width and length, respectively. Carbon 
cloth was used as an electrode. The cathode was 
placed on the mud’s surface for direct contact 
with oxygen since oxygen contributes to higher 
power production (Chen et al., 2015), while 
the anode was set at 5 cm from the bottom of 
the bottle. The electrode working surface area 
is 22.8 cm2. As shown in Figure 1, the external 
circuit was connected to the cathode and anode 
by Titanium wire, with an external resistance 
of 1 kΩ soldered to the Printed Circuit Board 
(PCB). The digital multimeter monitored the 
voltage output and electrical current.

Media Preparation and Sterilisation
In 1,000 ml of distilled water, 39 g of Potato 
Dextrose Agar (PDA) medium was dissolved 
and heated till boiling and homogenous. The 
medium was then autoclaved at 12°C for 15 
minutes at 2 atm to sterilise it. Then, 10% of 
tartaric acid was used to adjust the pH to 5.5.
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Microorganism Growth
A spore of A. aculeatus, A. oryzae, and Candida 
rugosa was grown aseptically on a PDA fresh 
medium. The incubation was carried out at 35°C. 
Each fungus’s growth phase was monitored 
regularly to find the optimum time for each one. 
A hemocytometer was used to count the culture 
media cells (Absher, 1973). The process was 
repeated three times to get the average value 
of the cell growth number. The specific growth 
rate (μ) for each fungus at a particular time was 
calculated using Equation 1 below (Yarmush & 
Pedersen, 1995; Levenspiel, 1999). 

 (1)

X and X0 are cell concentrations at time t and t 
= 0, respectively.

Food Waste Hydrolysis
A FW with a moisture content value of 61.17% 
was collected at Rumah Makan Asia Timur 
restaurant, located near ITS, and stored in a 
fridge at 2°C before its use. Then, diluted at 
different concentration ratios (w/v) 1:2, 1:1 
and 2:1 as shown in Table 1, and immediately 
blended with a kitchen blender. The simple 
separation method was used to separate solid and 
liquid residues. The hydrolytic microorganisms 
at their log phases then hydrolyse the liquid 
residue within 48 hours. FW from restaurants 
contains a variety of large macromolecules (Li 
et al., 2019), so, a single enzyme should not be 
effective for glucose production. The authors 
used three hydrolytic microorganisms at their 
log phases to hydrolyse FW 1011 cells for only A. 
aculeatus, only A. oryzae, only Candida rugosa, 
and the mixture of the three fungi to hydrolyse 
FW. 

Glucose Analysis
The DNS method was used to analyse 
the produced glucose after hydrolysis as 
described by Miller (Miller G.L., 1959). The 
spectrophotometer at 540 nm wavelength was 

used to measure the absorbance. The different 
known concentrations of glucose solution 
were used to make the standard glucose curve 
by plotting glucose concentration against 
absorbance.

MFC Experiment
In this study, 500 g of the substrate’s total weight 
and 500 g of Sidoarjo mud were mixed. The 12 
variables were analysed, as seen in Table 1. 1011 
cells of Shewanella oneidensis MR-1 at its log 
phases were added to each variable. The carbon 
cloth twill A 220 was cut into 5 cm x 2 cm with a 
2 mm width and sewn with titanium wire. The 
titanium wire for the anode was 30 cm in length, 
while the titanium wire for the cathode was 
only 15 cm. Before the SC-MFC operated, the 
carbon cloth was dipped in a 1 M NaCl solution 
for its activation, then, the substrate mixture was 
placed in the MFC chamber, as seen in Figure 
1. The anode was placed in the substrate and 
pressed down to remove the excess air bubbles. 
It was set 5 cm from the bottom of the chamber, 
while the cathode was placed on the mud’s 
surface.

The MFC chamber was connected to an 
external electrical circuit and observed for 18 
days using a batch reactor in which no additional 
substrate was added during the observation 
period. A digital multimeter was used to analyse 
the electrical current and voltage produced 
every day. The power density can be calculated 
as shown in Equation 2, where V is voltage (V), 
I is current (mA), and A is electrode area (m2) 
(Raad et al., 2020). The Biochemical Oxygen 
Demand (BOD5) analysis was carried out every 
three days, referring to SNI 6989.72: 2009, 
while COD analysis was carried out on the first 
and last days of observation, referring to SNI 
6989.2: 2009. The percentage of BOD5 and COD 
removal can be calculated using Equation 3.

 (2)

   (3)
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Results and Discussion
Microbial Growth Curve
A PDA medium was used to grow all the 
hydrolytic fungi. The inoculation size was 
1.5x108 cells/ml, 2x108 cells/ml, and 2.5x108 
cells/ml for A. aculeatus, A. oryzae, and 

Candida rugosa, respectively. Despite having 
identical culture conditions, the growth curves 
of A. aculeatus, A. oryzae, and Candida rugosa 
were different, as seen in Figure 2. They have 
different specific growth rates. The specific 
growth rate (μ) between 5 and 10 days for A. 

Figure 1: Single Chamber Microbial Fuel Cell (SC-MFC) diagram

Table 1: Sample code and different variations

Code Substrate Ratio Microorganism 
Used

Food Waste
(gram)

Water
(ml)

ᴡ/ν 1:2 O 1:2 A. oryzae 167 333
ᴡ/ν 1:2 A 1:2 A. aculeatus 167 333
ᴡ/ν 1:2 C 1:2 Candida rugosa 167 333
ᴡ/ν 1:2 M 1:2 Mixture of all 167 333
ᴡ/ν 1:1 O 1:1 A. oryzae 250 250
ᴡ/ν 1:1 A 1:1 A. aculeatus 250 250
ᴡ/ν 1:1 C 1:1 Candida rugosa 250 250
ᴡ/ν 1:1 M 1:1 Mixture of all 250 250
ᴡ/ν 2:1 O 2:1 A. oryzae 333 167
ᴡ/ν 2:1 A 2:1 A. aculeatus 333 167
ᴡ/ν 2:1 C 2:1 Candida rugosa 333 167
ᴡ/ν 2:1 M 2:1 Mixture of all 333 167
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aculeatus, A. oryzae, and Candida rugosa were 
calculated using Equation 1 and were 0.404/
day, 0.411/day, and -0.083/day, respectively. 
The higher the specific growth rate, the more 
microbes hydrolyse organic substrate, resulting 
in a higher conversion of organic matter into 
glucose, as seen in Figure 3. Glucose produced 
by FW hydrolysed by Candida rugosa with 
a low specific growth rate was low. It was 
noticed that there was a considerable increase in 
the number of cells at the log phase (Maier & 
Pepper, 2015). The log phase starts on the 9th day 
and the optimum time was on the 13th day, 15th 

day and the optimum time was on the 26th day, 
4th day and the optimum time was on the 7th day, 
6th day and the optimum time was on 10th day for 
A. oryzae, A. aculeatus, Candida rugosa, and the 
mixture of all the three fungi, respectively. 

Food Waste Hydrolysis and Glucose Production
The code ᴡ/ν 2:1 M, the food waste concentration 
ratio 2:1 hydrolysed by the mixture of three fungi, 
produces the highest glucose, which is 11.362 
g/L, as seen in Figure 3. In the concentration 

ratio of 2:1, the quantity of starch converted to 
glucose is high compared with other ratios since 
the amount of FW used was high. Therefore, 
by increasing the food waste ratio, the glucose 
content increases. The food waste ratio should 
be increased to produce more glucose. On the 
other hand, the mixture of three fungi produced 
a high amount of reducing sugar since the mixed 
enzyme pretreatment has a better reduction 
efficiency than a single enzyme treatment (Kim 
et al., 2006; Moon & Song, 2011). 

Power Density
MFC removes pollutants while simultaneously 
producing electricity from wastewater (Slate 
et al., 2019). MFC works by oxidising the 
organic substrate into smaller molecules using 
the microorganism, and producing electrons 
and protons H+. Then, the produced electrons 
are transported to the cathode through an 
external electrical circuit and converted into 
electrical energy while the protons migrate into 
the cathode surface. The electrons and protons 
react to reduce oxygen and produce water in the 
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cathode chamber. The protons and electrons are 
consumed in the cathode by reducing the soluble 
electron acceptors such as oxygen to form water. 

In brief, the reactions that occur in MFC are as 
shown in Equations 4 and 5 (Dutta & Kundu, 
2018):

Figure 3: The effect of hydrolytic microorganisms on glucose production from food waste within 48 hours

Figure 2: Growth curves of (a) A. oryzae, (b) A. aculeatus, (c) Candida rugosa, and (d) mixture of all the three 
fungi on a PDA medium

anode: Organic substrate → H+ + e– + oxidised substrate  (4)
cathode: 4H+ + 4e– + O2 → 2H2O     (5) 
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anode: Organic substrate → H+ + e– + oxidised substrate  (4)
cathode: 4H+ + 4e– + O2 → 2H2O     (5) 

The power density generated in the first 
days was low due to the adaptation of bacteria 
to the new environment, as shown in Figure 5. 
The power density increased until the 7th day 
and declined for the rest of the days due to the 
reduced substrate (glucose) since our system 
is batch. Logan reported that the decreasing 
power density in MFC is mainly caused by 
the low availability of oxidised compounds, 
resulting in a decreased bacterial population 

growth (Logan, 2009). The highest power 
density was produced where is a mixture of 
hydrolytic microorganisms. The mixed enzyme 
pretreatment produces a high amount of glucose 
compared with a single microorganism (Kim 
et al., 2006), resulting in increased power 
density. In MFC, electricity is produced due 
to the conversion of chemical energy into a 
biodegradable organic substances (Silveira et 
al., 2020). The food waste concentration ratio 

Figure 4: Power density produced using SC-MFC on different FW concentration ratios hydrolysed by fungi 
rich in hydrolytic enzymes. (a) represents ratio (ᴡ/ν) 1:2, (b) represents the ratio (ᴡ/ν) 1:1, and (c) represents 

the ratio (ᴡ/ν) 2:1
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of 2:1 hydrolysed by the mixture of three fungi 
(ᴡ/ν 2:1 M) achieved the highest power density 
of 8515.351 mW/m2 on the 7th day of MFC 
operation. In the concentration ratio of ᴡ/ν 2:1, 
the quantity of starch converted to glucose was 
too high, resulting in the highest power density 
when compared with other ratios.

The Growth of Microbial Population in MFC
The microbial growth depends on substrate 
concentration, pH, and temperature (Hwang 
et al., 2019). The highest number of microbial 
population (34.5x109 cells/ml), as seen in Figure 
5 was achieved by variable ᴡ/ν 2:1 M. This 
is due to the most elevated organic substrate 

Figure 5: Microbial population growth in MFC on different FW concentration ratios hydrolysed by fungi rich 
in hydrolytic enzymes. (a) represents ratio (ᴡ/ν) 1:2, (b) represents the ratio (ᴡ/ν) 1:1, and (c) represents the 

ratio (ᴡ/ν) 2:1
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present in the ratio (ᴡ/ν) 2:1 compared with 
other ratios. Nuryana reported that the increase 
in power density in MFC is directly proportional 
to the exoelectrogenic bacteria that transports 
electrons to the anode (Nuryana et al., 2020). 
In this research, looking at Figures 4 and 5, 
there is a steady increase in microbial growth 
and power density until the 6th to 7th day of 
operation. Therefore, it can be concluded that 
the bacteria that grew in our reactor were mainly 
exoelectrogenic bacteria. From the 7th day to the 
rest, the decline of bacteria shows that they have 
entered the death phase. It was attributed to the 
low availability of organic compounds since our 
system was batch.

BOD5 and COD
Gul (2021) revealed that the decrease of BOD5 
in MFC indicates that active bacteria oxidise the 
large molecules into smaller molecules, while 

producing energy (Gul et al., 2021). Figure 
6 and Table 2 show that ᴡ/ν 2:1 M achieved 
78.378% of BOD5 removal on the 18th day of 
MFC operation. The highest pollutant removal 
in ᴡ/ν 2:1 M compared with other variables due 
to its higher initial organic content and higher 
microbial concentration, as seen in Figure 
5. Figures 4 to 6 show the highest pollutant 
removal and power density production, occurs 
where the microbial population is highest. 
So, the authors assume that the bacteria in 
the reactor in the present study are mostly 
electrogenic. 

COD determines how much oxygen is 
necessary to oxidise organic compounds using 
a strong chemical oxidant (Hina et al., 2021), 
indicating water pollution (Lokman et al., 2021). 
This study achieved the highest COD removal 
of 84.874% by ᴡ/ν 2:1 M on the 18th day of 
MFC operation. This highest COD removal is 
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achieved in the ᴡ/ν 2:1 M variable due to the 
higher bacteria concentration, as seen in Figure 
5, which oxidises glucose to simple molecules.

Microbial activity influences pollutant 
removal. On the other hand, microbial activity 
is influenced by the microbial concentration and 
substrate concentration (Hwang et al., 2019). 
As seen in Figures 6 and 7, the most effective 
removal of BOD5 and COD occurs on the 6th 

to 7th day of MFC operation; this was directly 
proportional to the highest microbe population 
present in our reactor, as seen in Figure 5. From 

the 7th to the 18th day, there has been a continuous 
decrease in microbial population numbers due to 
the low availability of organic compounds as a 
substrate since our reactor was batch.

Conclusion
This research proposed an innovative and 
environmentally friendly method for food waste 
management. The electric energy was produced 
from the organic compound in food waste by 
integrating hydrolysis and microbial fuel cells. 

Figure 7: COD removal in MFC using different FW concentration ratios hydrolysed by fungi rich in 
hydrolytic enzymes

Figure 6: BOD5 removal in MFC using different FW concentration ratios hydrolysed by fungi rich in hydrolytic 
enzymes. (a) represents ratio (ᴡ/ν) 1:2, (b) represents the ratio (ᴡ/ν) 1:1, and (c) represents the ratio (ᴡ/ν) 2:1
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A. oryzae, A. aculeatus, and Candida rugosa 
greatly enhance food waste hydrolysis towards 
glucose production. The result showed that the 
mixture of the three microorganisms produced a 
high amount of glucose, leading to higher power 
density production in MFC and higher pollutant 
removal. Therefore, the current finding indicates 
that MFC may be used as a better solution for 
food waste management.
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