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Introduction 
Microplastics (MP) have long been a scientific 
focus due to their pervasive occurrence 
and persistence in the oceans, potentially 
threatening marine life and ecosystems. MP are 
a heterogeneous collection of plastic particles 
smaller than 5 mm with diverse morphological 
and chemical characteristics, intentionally 
manufactured or generated from the breakdown 
of macroplastics (Arthur et al., 2009). Pre-
production pellets, microbeads and synthetic 
fibers from cosmetics and clothing constitute 
a substantial source of primary MP emitted 
into the environment via effluent outfalls 
and runoff (Napper et al., 2015; Napper & 
Thompson, 2016). Successive fragmentation of 
plastic debris, including MP, due to prolonged 
weathering has led to the proliferation of 
smaller size fractions (< 500 µm) in the marine 

environment (Desforges et al., 2014). An 
estimated 24.4 trillion MP particles, weighing 
between 82 to 578 thousand tons, accumulate 
in the world’s upper oceans (Isobe et al., 2021), 
which only account for approximately 7% of 
the global plastic inputs to the oceans each year 
(NASEM, 2021).

Ingestion by biota provides an important 
pathway in removing and redistributing MP in 
the oceans (Wright et al., 2013). MP ingestion 
by large and conspicuous marine species has 
gained extensive scientific research, yet the risk 
of MP to small organisms from the lower trophic 
levels receives relatively little attention. Lower 
trophic organisms are particularly susceptible 
to ingesting MP due to their indiscriminate 
feeding behaviour with limited ability to 
differentiate between plastics and natural prey 
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(Moore, 2008). Zooplankton (0.2 to 20 mm), 
the most abundant organisms that exist wholly 
suspended in the water column feeding in the 
MP size range (Turner, 2004), are likely the 
most sensitive to MP. To date, 43 zooplankton 
taxa are capable of ingesting MP in field and 
laboratory observations (Botterell et al., 2019). 
As the major grazers and important food source 
for many organisms, zooplankton provide a 
fundamental pathway of MP cascading across 
marine food webs, posing threats to higher-
trophic-level consumers, including humans 
(Setälä et al., 2014; Walkinshaw et al., 2020). 

Previous studies have demonstrated the 
adverse effects of MP ingestion on zooplankton 
under laboratory conditions. At the individual 
level, ingestion of MP (microbeads and fibers) 
has caused reduced feeding and fecundity, 
impaired growth and mortality in various 
zooplankton (Cole et al., 2013; 2019; Lee et al., 
2013; Messinetti et al., 2018). At the population 
level, morphological and physiological changes 
are partially the result of gene expression in 
response to anthropogenic stressors, and MP is a 
potential stressor that leads to reduce phenotypic 
flexibility and resilience in zooplankton (Bai 
et al., 2021). As an ecological consequence, 
zooplankton grazing of MP may undermine 
biogeochemical cycling and carbon sequestration 
due to increased buoyancy of contaminated 
faecal pellets (Cole et al., 2016). Ingestion 
of MP by zooplankton may also cause global 
oxygen inventory loss at 0.2 to 0.5% as a result 
of reduced grazing pressure on phytoplankton, 
leading to additional remineralization of organic 
material in the water column consuming more 
oxygen (Kvale et al., 2021). 

However, the potential effects and 
consequences of MP contamination in 
zooplankton require critical scrutiny based 
on realistic conditions they are exposed to in 
highly dynamic natural environments. MP 
typically used in exposure experiments lacks 
representativeness to those found in the field, 
which may overestimate or underestimate the 
associated biological impacts (Phuong et al., 
2016). In addition, inadequate information 
regarding the concentrations and characteristics 

of environmental MP relevant to zooplankton 
ingestion is a rising concern. Understanding 
zooplankton exposure to MP across their 
potential feeding size spectra is crucial to 
understand the environmental risks MP pose to 
biota (Hartmann et al., 2019). In situ monitoring 
is important to understand the mechanisms that 
drive the bioavailability of MP and accumulation 
in zooplankton, and their relationships with 
environmental factors (Sun et al., 2017). This 
review aims to summarise the current knowledge 
on MP ingestion by zooplankton in the field and 
provide insights into a better understanding of 
the ecological risks of MP to marine organisms 
and ecosystems.

Methods
Web of Science and Google Scholar were 
searched between December 2021 to February 
2022 using keywords ‘microplastics’, 
‘ingestion’, ‘zooplankton’ and ‘bioavailability’. 
The retained publications are listed in Table 1 
and Table 2. 

Results and Discussion
Microplastic to Zooplankton Ratios 
The interaction between MP and zooplankton 
is generally assessed by examining (1) their 
co-occurrence and (2) in situ MP ingestion. In 
previous studies, microplastic to zooplankton 
(MP:ZP) ratios were assessed to infer the degree 
of interactions in a specific time and space they 
co-occurred (Collignon et al., 2014; Kang et 
al., 2015). The ratio compares their relative 
abundance and indicates the likelihood of 
encounter and ingestion of MP by zooplankton. 
Table 1 summarizes the MP:ZP ratios recorded 
in previous field studies from estuarine, coastal 
and oceanic environments. The North Pacific 
subtropical gyre, a concentration zone of 
marine debris (1.1 to 3.6 trillion floating MP 
particles; Lebreton et al., 2018), recorded 
an MP:ZP ratio of 0.2 (Moore et al., 2001). 
Despite the abundance of MP accumulating in 
subtropical gyres, interactions with the marine 
biota are predicted to be low, given the low 



IN SITU MICROPLASTIC INGESTION BY ZOOPLANKTON  	 193

Journal of Sustainability Science and Management Volume 18 Number 8, August 2023: 191-210

levels of biological activity (Clark et al., 2016). 
In Portuguese coastal waters, MP:ZP ratios 
varied from 0.04 to 0.14 and higher ratios were 
associated with intense anthropogenic activities 
and terrestrial inputs in proximity (Frias et al., 
2014). 

A few studies have observed seasonality in 
MP:ZP ratios as the effects of meteorological 
events. An earlier study by Lattin et al. (2004) 
showed that the MP:ZP ratio was relatively 
higher shortly after a storm event. The increases 
in MP abundance after the storm could be due 
to wind-driven vertical mixing in the water 
column, causing the resuspension of MP at 
depth. In addition, vertically stratified sampling 
rather than the surface sampling employed in the 
study might have contributed to the collection 
of more MP after the storm. Contrastingly, 
Kang et al. (2015) found higher MP:ZP ratios 

before the rainy season (May 2012: 0.086; July 
2013: 0.016) than after (July 2012: 0.022; July 
2013: 0.004) in Geoje Bay and Jinhae Bay in 
Korea. The differences primarily stemmed from 
a shift in dominant epineuston to Cladocerans 
with a remarkable increase in total density 
after the rainy season. Collignon et al. (2014) 
demonstrated the influence of wind conditions 
in determining the seasonality of neustonic MP 
and zooplankton abundance in the northwestern 
Mediterranean Basin over a year. During high 
wind conditions, MP tend to dissipate from the 
surface (before: 0.306 mg/m2; after: 0.060 mg/
m2), and zooplankton is less likely affected 
due to their ability to swim and maintain 
their distribution in the upper water column 
(Collignon et al., 2012). These studies underline 
the influence of different temporal scales on MP 
ingestion risks.

Table 1: Microplastic to zooplankton (MP:ZP) ratios recorded in previous field studies

Location MP:ZP Ratio Sampling Method Reference 

North Pacific Gyre 0.2 Surface horizontal haul Moore et al. (2001)

Santa Monica Bay, USA 0.3 Horizontal haul at surface, 
5 m and near bottom

Lattin et al. (2004)

Northwestern 
Mediterranean Sea

0.5 Surface horizontal haul Collignon et al. (2012)

Bay of Calvi 
(Mediterranean-Corsica)

0.002 Surface horizontal haul Collignon et al. (2014)

Portuguese coastal waters 0.04-0.14 Surface horizontal haul Frias et al. (2014)

Goiana Estuary, Brazil 0.3 Horizontal haul at surface 
and near bottom

Lima et al. (2014)

Southern Sea of Korea 0.004-0.086 Surface horizontal haul Kang et al. (2015)

Guanabara Bay, Brazil 7x10-5- 1x10-4 Surface and oblique hauls Figueiredo & Vianna (2018)

Australian estuaries 0.009-3 Horizontal and vertical 
hauls

Hitchcock & Mitrovic 
(2019)

Terengganu coastal 
waters 

0.4-4.5 Surface water pumping Taha et al. (2021)

Cyprus coastal waters 0.021-0.241 Vertical haul from 0-50 m Vasilopoulou et al. (2021)

Western Mediterranean 
Sea

0.04-5.33 Surface horizontal haul Fagiano et al. (2022)
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Estuaries are prone to high-level MP 
contamination due to their potential to retain 
pollutants and proximity to riverine discharge 
(Browne et al., 2010). In a tropical estuary 
in Brazil, Lima et al. (2014) recorded MP to 
ichthyoplankton ratio of 0.3 and MP density 
was nearly double the density of fish larvae at 
the bottom of the lower estuary during the rainy 
seasons. The findings highlight the distribution 
of MP and zooplankton follows the water 
movement flushing out or into the estuary. 
Ingestion risk is traditionally anticipated to be 
profound in estuaries than in offshore waters 
(Zhao et al., 2014; 2019). Surprisingly, Taha et 
al. (2021) observed higher MP:ZP ratios in the 
offshore waters of Terengganu, Malaysia (0.5-
4.5) than in the estuary (0.8-1.4), suggesting 
the role of local hydrodynamic processes in 
dispersing MP across a wide range of space. 
While rainfall appears to be a major determining 
factor influencing the bioavailability of MP in 
marine environment, it remains unclear how 
other environmental factors such as salinity and 
temperature play a role (Hitchcock & Mitrovic, 
2019).

While most field studies have focused on 
neustonic MP and zooplankton, in the Cyprus 
coastal waters, Vasilopoulou et al. (2021) 
conducted a comparison of MP and zooplankton 
abundance in the vertical axis (0-50 m). Although 
no spatiotemporal variability of MP:ZP ratios 
were detected, there was a significant correlation 
between MP and copepod abundance in the 
water column. Biofouling is among the major 
contributors to the downward transport and 
distribution of MP within the water column that 
is severely understudied (Cole et al., 2011). In 
addition, as zooplankton constantly migrate 
throughout the water column, it is necessary to 
assess the circulation and vertical distribution 
of MP for practical comparisons (Wright et al., 
2013).

Size is of ecological relevance in influencing 
the bioavailability of MP to organisms (Hartmann 
et al., 2019). Only one study has assessed the 
potential MP ingestion in zooplankton based 
on their accessible prey size range (Figueiredo 

& Vianna, 2018). The results showed that by 
considering the maximum prey size range of fish 
larvae (100-800 µm) and chaetognaths (150-300 
µm), the mean ratio of MP to accessible potential 
prey was 7x10-5 and 1x10-4 for fish larvae and 
chaetognaths, respectively, suggesting low 
biological interactions.

Even with increased efforts to reduce 
anthropogenic pressure, a recent study 
by Fagiano et al. (2022) recorded MP:ZP 
ratios ranging between 0.04 and 5.33 in a 
coastal marine protected area in the western 
Mediterranean Sea. Moreover, they detected 
a significant negative correlation between 
copepods and MP abundance, highlighting 
the influence of zooplankton community 
composition on the occurrence of MP. The 
dominance of particular zooplankton groups 
is partly responsible for the removal and 
redistribution of MP within the water column 
through ingestion and egestion (Sun et al., 
2018a).

In Situ Microplastic Ingestion 
Most studies on MP ingestion by zooplankton 
occur within the laboratory and primarily 
examine the post-ingestion physiological and 
toxicity effects (Bai et al., 2021; He et al., 
2021). There are only 22 in situ investigations 
on MP ingestion in zooplankton to date (Table 
2), focusing on the occurrence, distribution 
and characteristics of MP in different 
zooplankton taxa and the relationships between 
environmental variables and MP ingestion. 
The actual contamination level in zooplankton 
is generally expressed as ‘encounter rate’ or 
‘incidence of ingestion’, which indicates the 
amount of MP particles found in zooplankton 
individuals (Desforges et al., 2015; Md Amin et 
al., 2020). 

Incidence of Microplastic Ingestion 
MP ingestion is highly variable between 
zooplankton taxa and across spatiotemporal 
scales. The evidence of MP contamination in 
marine zooplankton was first documented in 
the Northeast Pacific Ocean (Desforges et al., 
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2015). The two ecologically important species 
in the region, Neocalanus cristatus copepods 
and Euphausia pacifica euphausiids recorded 
ingestion incidence of 0.03 MP/ind. and 0.06 MP/
ind., respectively. Similar ingestion incidence 
has been reported in other regions including 
Terengganu coastal waters (0.003-0.40 MP/ind.; 
Md Amin et al., 2020; Taha et al., 2021), the 
Andaman Sea (0.03-0.25 MP/ind.; Goswami et 
al., 2020), the Eastern Arabian Sea (0.03-0.57 
MP/ind.; Rashid et al., 2021) and high ingestion 
incidence (> 1 MP/ind.) in Chinese coastal 
waters (Sun et al., 2018b) and Arctic (Botterell 
et al., 2022). Nevertheless, comparison between 
studies remains a challenge due to the lack of 
consistency in sampling protocols. Notably, in 
situ MP ingestion incidence is several orders 
of magnitude lower than MP ingestion rates 
reported in previous exposure experiments 
(Cole & Galloway, 2015; Botterell et al., 2020), 
highlighting the disparity in MP concentrations 
tested in the laboratory relative to values found 
in the natural environment.

Surprisingly, there was no evidence of MP 
ingestion in marine copepods Temora longicornis 
(N = 90) in the Southeast coast of England, 
despite the abundance of MP in the seawater 
(6.5-9.5 particles/m3) (Outram et al., 2020). 
Although the ability to distinguish and reject 
MP could partly explain the zero contamination 
in T. longicornis (Xu et al., 2017), the small 
sample size (N = 90) selected for digestion 
might have caused the underestimation. A 
few studies have investigated the relationship 
between MP ingested by zooplankton and MP 
available in seawater. Ingestion of fibers by 
zooplankton in Terengganu coastal waters and 
the Northeast Pacific Ocean was significantly 
correlated to the abundance of fibers in seawater 
(Desforges et al., 2015; Md Amin et al., 2020), 
suggesting fibers are highly bioavailable in the 
marine environment. In contrast, Goswami et al. 
(2020) did not detect any correlation between 
the concentrations of MP in the Andaman Sea 
and MP ingested by zooplankton, which could 
be due to the underestimation of the small size 
fraction of MP relevant to zooplankton ingestion 
(< 251 µm). 

Based on field data, future laboratory 
studies should include diverse zooplankton taxa 
to understand the effects of MP on zooplankton 
of different trophic levels and life stages. 
Sun et al. (2018b) have demonstrated that in 
situ MP ingestion was significantly higher in 
omnivores (0.32 MP/ind.) than in carnivores 
(0.20 MP/ind.) and herbivores (0.17 MP/ind.), 
suggesting the influence of feeding strategies on 
MP intake and their trophic transfer to higher-
levels through predation (Setälä et al., 2014). 
In addition, higher-level organisms of the 
planktonic food web, such as hydrozoans and 
fish larvae, are more likely to accumulate MP 
(Sun et al., 2018a; Rapp et al., 2021; Rashid 
et al., 2021) and Zheng et al. (2020) detected 
a significantly higher ingestion incidence in 
Medusae compared to other groups in the Bohai 
Sea, China. The presence of MP in barnacle 
and crustacean nauplii in the estuarine habitat 
in South Carolina reflects the susceptibility of 
zooplankton larvae to MP ingestion (Payton 
et al., 2020), as highlighted in the previous 
experimental studies (Cole & Galloway, 2015; 
Messinetti et al., 2018; Yu et al., 2021). The 
contamination level at the community level 
has been assessed by combining individual 
ingestion incidence with zooplankton density, 
and copepods are probably the largest repository 
of MP due to their predominance in almost all 
marine environments (Desforges et al., 2015; 
Sun et al., 2018b; Rashid et al., 2021). 

Spatiotemporal Variability of Microplastic 
Ingestion
Investigations into the spatial and temporal risks 
of MP ingestion are of ecological importance 
due to the well-recognised spatial heterogeneity 
of MP and zooplankton in the marine system. 
Zheng et al. (2020) detected a strong seasonality 
in the abundance of ingested MP in the Bohai 
Sea zooplankton community, with significantly 
higher values recorded during the rainy season 
(2.03 ± 2.87 MP/m3) than the dry season (0.41 
± 0.38 MP/m3). The seasonal difference was 
likely the combined effects of increased land-
based plastic inputs and the proliferation of 
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zooplankton abundance in the rainy season, 
enhancing the chances of encounter and 
ingestion. Within the same geographical 
range, Zheng et al. (2021) found that MP 
ingestion incidence in JiaoZhou Bay copepods 
was significantly higher in winter (0.26 MP/
copepod) and spring (0.23 MP/copepod) than 
in summer (0.16 MP/copepod). The seasonality 
was likely associated with seawater temperature 
changes, with the detection of a significant 
negative correlation between temperature and 
MP ingestion incidence, suggesting the impact 
of temperature on biological processes (i.e. 
metabolism) that enhance MP ingestion. 

The diurnal variation of MP ingestion by 
zooplankton was investigated for the first time 
by Goswami et al. (2023) in the Arabian Sea. 
Although zooplankton is anticipated to actively 
graze at night, MP ingestion was relatively 
higher during the daytime, which could be an 
effect of biological dilution as described by 
Desforges et al. (2015). The temporal variation 
of MP ingestion in tropical waters is relatively 
understudied. Zavala-Alarcón et al. (2023) 
are the first to examine seasonal variation 
of MP ingestion by zooplankton in tropical 
waters of the Central Mexican Pacific. They 
did not find significant seasonal (rainy and 
dry) differences in MP ingestion, which was 
likely be due to seasonal variations in feeding 
strategy that compensate for the differences in 
the concentration of MP ingested and the lack of 
seasonal variability of waterborne MP. 

Spatial comparisons of MP ingestion have 
been mainly compared on a horizontal scale, 
while our understanding of MP contamination 
in zooplankton in the water column is limited 
by the lack of vertical stratified samplings. 
Fish larvae in the English Channel showed a 
decreasing trend of MP ingestion with increasing 
distance from the shore (10-35 km) (Steer et al., 
2017). The risk of ingestion was greatly reduced 
offshore due to increasing fish larvae abundance 
coinciding with the dilution of waterborne 
MP. The result is in close agreement with the 
observations in the Northeast Pacific Ocean in 
which the contribution of ingested fibrous MP 
in euphausiids decreased offshore (Desforges et 

al., 2015). In Chinese coastal waters, the spatial 
distribution of MP in zooplankton followed a 
similar pattern to the distribution of zooplankton 
biomass and seawater MP, with the highest MP 
retention near the Yangtze estuary (Sun et al., 
2018a, 2018b).

Characteristics of Ingested Microplastics
The most common MP shapes ingested by 
zooplankton were fibers and fragments (Steer 
et al., 2017; Zheng et al., 2020, 2021; Aytan 
et al., 2022; Sipps et al., 2022), which are 
particularly underrepresented in exposure 
experiments. Substantial fiber input from 
textiles and clothing, combined with their low 
density allows them to remain suspended in the 
water column, increasing their bioavailability to 
zooplankton (Browne et al., 2011). In addition, 
the prevalence of fiber ingestion could be due 
to the confusion with natural prey, such as 
chain-forming diatoms, and the shape is easier 
to handle due to their small diameters (< 50 
µm) (Cole et al., 2013; Coppock et al., 2019). 
In contrast, fragments sink rapidly and become 
increasingly accessible to organisms residing at 
deeper depths and to those performing vertical 
migration throughout the water column (Fazey 
& Ryan, 2016). The ingestion of spherical MP is 
remarkable in some regions, such as the Eastern 
Arabian Sea (52%; Rashid et al., 2021), the 
Yellow Sea (27%; Sun et al., 2018a) and the East 
China Sea (26%; Sun et al., 2018b), where the 
spatial variability is attributable to the dynamics 
of local plastic sources.

Findings from field observations have 
provided evidence of the prevalence of small 
MP in marine zooplankton. MP detected in 
zooplankton varied extensively in size, to as 
low as 3 to 5 µm with the aid of Raman and 
epifluorescence microscopy (Brandon et al., 
2020; Sipps et al., 2022). Small MP (< 333 
µm) are the predominant size fraction ingested 
by zooplankton, with more than 70% of the 
ingested MP being smaller than 200 µm and 
250 µm in the Yellow Sea (Sun et al., 2018a) 
and the Andaman Sea (Goswami et al., 2020), 
respectively. Furthermore, Sipps et al. (2022) 
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demonstrated the ingestion of mini MP                
(< 50 µm) by three copepod species, Acartia 
tonsa, Centropages typicus and Paracalanus 
crassirostris, in the urbanised Hudson-Raritan 
estuary. The results showed that all the beads 
ingested were 5 µm in diameter and 57% of the 
fragments (3-165 µm) fell below 50 µm while 
75% of the plastic films (7-60 µm) were less 
than 25 µm. However, the abundance of this 
size range in the environment is undersampled 
due to inappropriate mesh size of nets (> 333 
µm) used in MP sampling. Although there was 
no significant difference between body size and 
MP ingestion incidence, Md Amin et al. (2020) 
found that the size of ingested MP generally 
corresponded with the size of zooplankton 
bodies. 

Zooplankton have been shown to ingest 
a variety of MP colours in the field, with the 
majority being blue, black and red (Desforges et 
al., 2015; Steer et al., 2017; Zheng et al., 2020). 
It remains a knowledge gap regarding the role 
of feeding selectivity over MP shape, colour 
and chemical composition in zooplankton and 
marine organisms in general. In the western 
English Channel, Steer et al. (2017) showed 
blue MP (83%) most commonly found in the fish 
larvae was consistent with the occurrence of blue 
MP in seawater (50%), suggesting the ingested 
MP is a positive function of MP available in 
the environment. On the contrary, Kosore et al. 
(2018) found a mismatch between the dominant 
MP colour in zooplankton (black, 42%) and in 
the seawater (white, 51%), which could be due to 
differences in the residence time of MP retention 
in zooplankton and the environment. Polymers 
such as polyethylene, polypropylene, polyester 
and nylon were predominant in zooplankton, 
implying a diverse source of plastics released 
into the environment and the susceptibility of 
zooplankton to low-density plastics. The role of 
vertical migration in zooplankton is reflected in 
the ingestion of high-density polymers such as 
polyvinyl chloride (Sun et al., 2018b; Goswami 
et al., 2020; Botterell et al., 2022). However, 
the relationship between polymer types and MP 
ingestion remains a question. 

Ecological Relevance of Laboratory Studies 
Field studies have demonstrated MP 
contamination in a wide range of zooplankton 
species from different marine habitats (estuaries, 
coastal and open oceans) and the contamination 
level varies temporally. The incidence of MP 
ingestion varies between species from as low 
as 0.003 MP/ind. in chaetognaths to a high 
value of 1.17 MP/ind. in Stomatopoda (mantis 
shrimp) larvae. Characterisation of MP in 
zooplankton revealed a myriad of shapes, 
sizes, colours and chemical compositions that 
are readily ingestible. Notwithstanding the 
evidence, there is a lack of integration of field 
data into the design of laboratory experiments. 
Most studies have used elevated concentrations 
of MP exceeding those reported in the field, 
and the associated effects might have been 
overestimated (Burton, 2017). However, in 
light of future scenarios, it is necessary to test 
the impacts of high degree exposure as MP will 
inevitably increase due to rising demand and 
usage of plastics and continuous fragmentation 
in the environment (Botterell et al., 2020). It is 
also equally important to consider factors such 
as biofouling, turbulence and temperature in 
experiment designs to augment environmental 
relevance and knowledge into the influence of 
climate change on MP ingestion.

Diversification of zooplankton species 
from different life stages in lab-based studies is 
needed to inform the knowledge gap concerning 
the impacts of MP at the community level and 
trophic transfer within and between planktonic 
and oceanic food web. Meroplankton, the larval 
stages of many ecologically and commercially 
important pelagic and benthic species, are less 
represented in laboratory studies (Botterell et 
al., 2019). Assessing ecological risks of MP to 
meroplankton such as fish larvae and mollusc 
larvae would be particularly vital as changes to 
the population might impact seafood security. 
Further work is also required to investigate 
MP gut retention time and egestion in different 
zooplankton groups as this is key to the severity 
of effects they may experience, and to the 
potential bioaccumulation across trophic levels. 
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MP size is a crucial factor determining 
the ingestion capacity and efficiency. While 
most studies have used microbeads (< 30 µm) 
in feeding experiments, zooplankton such as 
copepods can ingest fibers and fragments of 
size up to 2485 µm and 380 µm, respectively, 
in the field (Zheng et al., 2021). There is a 
need to investigate the ingestion of larger MP 
(> 300 µm) as feeding interactions might not 
necessarily be restricted to sizes smaller than 
the feeding apparatus (Reisser et al., 2014). 
In addition, ingestion of long fibers and large 
fragments might have more severe impacts, 
such as intestinal blockage and entanglement. 
MP ingested by natural zooplankton comes in a 
diverse composition of chemical properties and 
colours. Future research should include different 
polymers to investigate their toxicity effects and 
bioavailability to zooplankton. 

Recommendations for Future Field Studies
Future field investigations will provide 
information on the extent of MP contamination 
in the zooplankton community and contribute 
to the development of global and local policies 
related to plastic pollution. However, there 
are still challenges to be addressed. (1) Lack 
of standardised protocols complicates direct 
comparisons between studies. (2) Simultaneous 
collection of zooplankton and MP is necessary 
to investigate the correlation between ingested 
MP and environmental MP. In addition, 
appropriate sampling method for the lower 
size range of MP relevant to zooplankton 
ingestion (< 20 µm) is urgently needed. 
(3) There is inadequate information on the 
bioavailability and ingestion of MP in deeper 
waters, especially at the mid and bottom depths 
where zooplankton and high-density MP can 
co-occur. Discrete vertical samplings would 
help in understanding the depth distribution of 
MP and their bioavailability to zooplankton at 
specific depths, as well as those that migrate 
vertically. (4) Most field studies were carried out 
in a single survey event. Inadequate knowledge 
regarding the spatiotemporal variability of MP 
requires broader spatial and temporal coverage 
in sampling design. (5) Lack of integration 

of environmental parameters will lead to 
ambiguous interpretation into the roles of natural 
variations in MP distribution and ingestion. (6) 
Sample sizes of zooplankton digestion should be 
sufficient enough to avoid overestimation of MP 
ingestion. (7) Precautions must be taken to keep 
contamination at minimum during sampling and 
laboratory analysis. 

Microplastics Trophic Transfer in Marine 
Food Web 
Previous laboratory studies have demonstrated 
zooplankton as a viable pathway of MP entry 
and bioaccumulation in the marine food web. 
MP has been documented to transfer within 
the planktonic food web (Costa et al., 2020) 
and from the planktonic to pelagic (Setälä et 
al., 2014) and benthic (Van Colen et al., 2020; 
Hasegawa and Nakaoka, 2021) food webs. 
Hasegawa and Nakaoka (2021) showed that 
benthic fish Myoxocephalus brandti exposed 
to contaminated mysids ingested three to 11 
times more microbeads than those exposed to 
microbead suspension (200 and 2000 µg/L), 
owing to the ability of mysids to fragment 
MP, which was also observed in Antarctic 
krill (Dawson et al., 2018). The experiment 
highlights planktivorous predators are more 
susceptible to MP via secondary ingestion than 
direct ingestion in the water column.

Although increasing studies support 
the tendency of lower trophic organisms to 
accumulate MP that could potentially lead 
to cascading effects in marine food webs, 
in situ evidence of bioaccumulation and 
biomagnification of MP and the associated 
chemical additives in the aquatic food web 
is lacking (Koelmans, 2015; Alava, 2020; 
Walkinshaw et al., 2020; Miller et al., 2020, 
2023; O’Connor et al., 2022). A recent 
bioaccumulation assessment by Miller et al. 
(2023) showed that in a simple coral reef food 
chain (zooplankton-benthic crustaceans-reef 
fish), the bioaccumulation (MP ingestion predator/ 
[MP concentration environment + MP concentration 
prey]) factors (BAF) in higher-trophic species 
(benthic crustaceans and reef fish) were < 1, 
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indicating little to no bioaccumulation across the 
marine food chain. A bioaccumulation model 
(5 days to 100 years projection) for MP in the 
cetacean food web (zooplankton-invertebrate-
fish-mammals) in the Northeastern Pacific did 
not find significant biomagnification or increase 
in MP concentrations as the trophic level 
increased for three environmental MP exposure 
scenarios (0.003 g/L, 0.010 g/L and 0.04 g/L) 
(Alava, 2020).

The low bioaccumulation of MP could be 
due to varying individual gut retention times 
and egestion and the complexity of marine 
food web structure and intricate prey-predator 
relationships, given that marine species can 
utilize multiple food sources (Alava, 2020; 
O’Connor et al., 2022). For zooplankton, 
previous experiments showed that MP 
elimination took hours and up to 7 days (Cole et 
al., 2013; Kaposi et al., 2014; Vroom et al., 2017; 
Coppock et al., 2019), and smaller and fibrous 
MP tend to retain in the gut for a longer time 
(Jeong et al., 2017; Cheng et al., 2020; Aytan 

et al., 2022). In addition, in situ observations 
suggest that the bioaccumulation of MP is 
closely associated with the feeding strategies of 
marine species; MP uptake is generally high in 
unselective feeders (deposit and filter-feeding 
omnivores) and low in specialised feeders 
(grazing herbivores and selective carnivores) 
(Miller et al., 2020). 

MP has been widely reported in 
commercially important seafood, yet the impact 
of MP on human via seafood consumption is 
unclear (Walkinshaw et al., 2020). Studies 
showed that the estimated chemical exposure 
(MP associated pollutants and additives) to 
humans following seafood consumption is 
estimated to contribute < 0.1% of the total dietary 
exposure (Lusher et al., 2017). To improve our 
understanding of MP transfer across the marine 
food web and its implications for humans, future 
bioaccumulation assessments should consider 
MP elimination and all possible routes of uptake 
(environmental exposure, ingestion, respiration, 
and diet).

Figure 1: Conceptual diagram showing the trophic transfer and bioaccumulation of microplastics in marine 
food webs, their bioavailability to and ingestion by zooplankton, and the ecological relevance of the 

experimental approach (MP = microplastics)
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Conclusion
This study reveals a high variability of MP 
ingestion across a wide range of zooplankton 
taxa from different marine habitats. Ingested 
MP come in a variety of shapes, sizes, chemical 
compositions and colours, as opposed to those 
used in the laboratory experiments. The study 
highlights the importance of environmental 
variables (rainfall and hydrodynamics) in 
determining the spatiotemporal overlap of 
MP and zooplankton the bioavailability and 
ingestion of MP (Figure 1). More field data are 
imperative to provide information on realistic 
MP exposure conditions for laboratory studies 
to enhance environmental relevance and lay 
a foundation for ecological risk assessment 
of MP in the marine environment. Continued 
global plastic production and use will inevitably 
result in the proliferation of MP in the marine 
environment, necessitating global agreement 
and action to reduce plastic emissions to the 
environment.
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