eISSN: 2672-7226
© UMT Press

Journal of Sustainability Science and Management
Volume 19 Number 3, March 2024: 192-220

SPENT BLEACHING EARTH: SYNTHESIS, PROPERTIES,
CHARACTERISATION AND APPLICATION

SIGAUKE, PLACXEDES*, MAMVURA, TIRIVAVIRI, ABDULKAREEM, SAKA AMBALI
AND DANHA, GWIRANAI

Department of Chemical, Materials and Metallurgical Engineering, Botswana International University of Science and
Technology, Private Mail Bag 16, Plot 10071 Palapye, Botswana.

http://doi.org/10.46754/jssm.2024.03.014
Published: 15 March 2024

*Corresponding author: sp19100021@studentmail.biust.ac.bw
Submitted final draft: 31 August 2023 Accepted: 29 October 2023

Abstract: Spent Bleaching Earth (SBE) is hazardous solid waste generated from the
edible oil industry through the oil bleaching process, as it is used to purify the edible
oil to accomplish the strict standards required for edible oil on colour, taste and hence
oil’s shelf-life. It has diverse applications for energy, construction, and agriculture, which
are attributed to its remarkable physical and chemical properties. Waste generation can
be reduced by utilising SBE for applications that include biogas production, bio-organic
fertiliser, lubricating grease and foamed concrete incorporating SBE. In line with this
background, this paper compiled and reviewed the literature on the synthesis of SBE
through the activation of bentonite, edible oil bleaching process, properties of SBE and
characterisation techniques for SBE. Finally, the merits and demerits of the application of
SBE are expounded. The overall performance of SBE in their respective applications is
enhanced by free cations and residual oil present. Finally, future research considerations
are also discussed for the co-pyrolysis application of SBE and other biomass substrates as
an economically significant prospect. It is noted that reusing SBE appears to improve the
oil refining industry’s sustainability and in turn the cities and communities.

Keywords: Edible oil bleaching, oil adsorption, residual oil, spent bleaching earth, waste

management.

Introduction

Spent bleaching earth (SBE) is a 2:1 unit layer
structured alumino-silicate mineral consisting
of montmorillonites (Loh ef al., 2015a; Liu et
al., 2020) mainly of clay minerals (Abdulbari
et al., 2011; Malakootian et al., 2011). It is
a solid residual adsorbent waste generated
in the edible oil industry after discolouration
(Pollard et al., 1991; Huang & Chang, 2010;
Suhartini et al., 2011; Fahmil et al., 2014).
SBE is currently discarded directly in landfills
near the factories without treatment (Lee et al.,
2000; Kheang et al., 2006; Nursulihatimarsyila
et al., 2010; Mana et al., 2011; Cheong et al.,
2013; Prokopov & Mechenov, 2013; Bachmann
et al., 2020b). This is so because SBE would
have lost its adsorption properties, necessitating
additional transport costs from the oil refinery
and treatment before being dumped at the
landfill site. SBE after the bleaching process,
contains residual oil of 20-40% by weight
and after being left on landfill sites, it comes

into contact with air (Nursulihatimarsyila
et al., 2010; Beshara & Cheeseman, 2014a;
Fahmil ef al., 2014; Oladosu et al., 2017)stable
commercial products. Recovery of vegetable
oil from spent bleaching earth is an area where
ample opportunities exist for cleaner production
and cost saving in the vegetable oil processing
industry. Conventional oil extraction and
refining processes, which involve multiple unit
operations, have several disadvantages. These
include complex separation steps, energy-
intensive operations, the requirement for large
amounts of water and hazardous chemicals
and the potential of generating large quantities
of wastes. Conventional oil extraction mostly
uses hexane. High energy consumption, high
temperature operation, the important portion
of the nutritional oil components being lost
and large amount of water during the process
of refining result from the use of hexane. There
is a dire need for the development of separation
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techniques that will facilitate recovery of
vegetable oil from spent bleaching earth
while sustaining the nutritional components
naturally present in the vegetable oils and
reducing the negative impact of oil processing
on the environment. This paper reviews the
state-of-The art technologies for recovery of
vegetable oil from spent bleaching earth. It
presents the development of the technologies
chronologically and compares their relative
merits from aspects of capital requirements,
resource  utilisation, cleaner  production,
sustainability and economy. The paper ends with
a look at supercritical fluid extraction (SFE.
Thus, it may self-ignite, causing hazardous
fires (Kheang et al., 2006; Yuan et al., 2020)
through spontaneous combustion. Disposing of
SBE in landfills causes environmental pollution
problems emanating from residual oil content,
water content, leachable trace heavy metal,
degradation of organic compounds and is asource
of odours (Saleh Alhamed & Al-Zahrani, 1999).
This is caused by impurities extracted from the
unrefined oil and its exposure to atmospheric air
resulting in residual oil oxidation accelerated
by bleaching the earth’s high surface area.
SBE is therefore, considered a hazardous waste
because of its high organic content (Beshara &
Cheeseman, 2014a). Similarly, the disposal of
SBE in landfills is considered problematic to
the environment, hence the need to properly
manage SBE waste.

Between 1.5 and 2.0 million tonnes of SBE
are generated annually based on the world’s
cooking oil production of 128.2 million metric
tonnes in 2007. In Malaysia, bleaching earth
added per tonne of crude palm oil (CPO) amounts
to 5-10 kg resulting in up to 170 000 tonnes of
SBE generated per annum (Loh et al., 2015). A
palm oil refining plant in the cooking oil industry
with a production capacity of 1000 tonnes daily
will need 109,000-436,000 tonnes of bleaching
earth annually. Generation of SBE is estimated
to exceed 2 million tonnes per year based on
vegetable oil world consumption of 128 million
tonnes (USDA, 2009) and assuming 1 wt.% of
bleaching earth is used relative to the amount of
edible oil processed (Beshara and Cheeseman,
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2014). In Saudi Arabia, the estimated amount
of the spent clay produced annually (assuming
2 wt.% is used in bleaching) is 5,200 tons/year
(Saleh Alhamed & Al-Zahrani, 1999) whilst in
Algeria, Poland and Japan, edible oil refineries
produce about 8,000, 40,000 and 80,000 tonnes
respectively of SBE per year mostly in oil
refining (Mana et al., 2011; Krzysko-Lupicka et
al.,2014).

SBE originates from bentonite clay after the
adsorption of impurities from crude oil during
the bleaching. Bentonite or natural bleaching
earth is an inorganic, green, low-cost adsorbent
and non-toxic 2:1 layer clay material (Maged
et al., 2020) found in many parts of the world.
Bentonite can exchange ions on the surface
(Darmawan et al., 2020) with acid activation
of bentonite producing Si-rich phase which is
more acidic through dissolution of non-clay
components mainly in the octahedral layer and
exchange of cations with hydrogen ions which
then results in improved surface area, porosity,
bleaching effectiveness, interlayer  sites
hydrophilic properties (Soetaredjo et al., 2021)
as a result of the activation process of bleaching
earth, is a major drawback in the production
of bleached-palm oil. The high acidity of
bleaching earth generates problems for the
process equipment as well as the product, which
are economically disadvantageous. Addressing
this pivotal issue in the manufacture, a more
environmentally friendly and efficient activation
process of bleaching earth using thermal
activation is evaluated. Two types of bentonite-
bleaching earth collected from two different
locations were used throughout this study; that
is from Pacitan and Ponorogo, coded as GS and
SS, respectively. The effect of the proportion
ratio of GS to SS (1:4, 2:3, 3:2, and 4:1 and
strongly protonated clay mineral surface (Shattar
et al., 2020)the facile one step acid activation
of bentonite derived functionalized adsorbent
(AB. Various methods have been used for the
activation of bentonite using acid. Methods
recorded by researchers differ with the type of
acid used, the concentration of acid, clay-to-acid
ratio, contact time and activation temperature.
Because bentonite possesses excellent chemical,
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physical and sorption properties, it is used for
the adsorption of varying pollutants, including
removing impurities from vegetable crude oil
through oil bleaching, and is considered an
integral part of oil processing to improve the
taste and appearance of oils through reduction
of heavy metals, phosphorous and to improve by
reducing Bentonite activated with acid are the
common bleaching agents and their selection
for this purpose is favoured by their superior
bleaching properties such as specific surface
area and porosity. During the bleaching process,
activated bentonite adsorbs oxidation products,
peroxides (Usman et al., 2012), pigments and
fatty acids, salts residuals (Gharby, 2022),
phosphatides, gums, trace metals, phospholipids,
soap,  carotenoids,  xanthophylls, lipid
peroxidation products, chlorophyll, tocopherols
and gossypol (Kirali & Lagin, 2006; Foletto et
al., 2011). These impurities affect the market
value of the oil by giving it a colour that is not
appreciated by customers, creating odour, and
shortening shelf life. In addition, they degrade
oil quality by altering its taste, thereby losing
its flavour. The green colour in oil is mainly
caused by chlorophyll, while carotenoids are the
red/yellow colour pigments, so the bleaching
capacity is primarily based on these two elements
but more conveniently measured by chlorophyll
adsorption because P-carotene molecules
decompose to form shorter molecules (Bayram
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et al., 2021). These elements are removed
during the bleaching process under vacuum
conditions at high temperatures of 80 — 120 °C
for up to 40 min with adsorbent dosages varying
from 0.1 to 3%, resulting in the generation of
spent bleaching earth as waste material. After
the bleaching process, the sensory quality
and oxidative stability of deodorised oil are
improved. It should be noted that the quality of
SBE produced depends on the activation process
of bentonite, the bleaching process involved,
and the type of oil to be bleached. Presented in
Figure 1 is the mechanism of bleaching process
reaction.

SBE possesses lower bulk density, high
amorphous phase content, high cation exchange
capacity and lower thermal conductivity thus
making it one of the most studied industrial
wastes. Additionally, application of SBE in
fields of engineering and science include
production of biogas (Ward, 2012; Moshi,
2017), biodiesel (Fahmil et al., 2014), biomass
briquettes (Suhartini et al., 2011), biofuel
(Sapawe & Hanafi, 2018), clay polymer bricks
(Beshara & Cheeseman, 2014a), bio-organic
fertiliser (Loh et al., 2015) and lubricating grease
(Abdulbari et al., 2011). Furthermore, SBE can
be regenerated for adsorption in water treatment
plants (Malakootian et al., 2011; Mana et al.,
2011; Tang et al., 2015)”ISSN”:21680485”,”
abstract”:”Attapulgite/carbon nanocomposites

Bleaching earth

Crude oil Neutralisation R
Bleaching N /
Filtration

Spent bleaching earth Bleached oil

Figure 1: Mechanism of bleaching process and production of SBE
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were fabricated via one-step calcination of the
spent bleaching earth served as adsorbents for
the efficient removal of heavy metal ions (Cu(Il
and as an adsorbent in the bleaching process
(Saleh Alhamed & Al-Zahrani, 1999).

Studies on SBE include a review paper
on the treatment of SBE with perceptions on
interactions of SBE on crops and soils as a
fertiliser (Loh et al., 2017), technologies for
recovering edible oil from SBE (Oladosu ef al.,
2017)stable commercial products. Recovery of
vegetable oil from spent bleaching earth is an
area where ample opportunities exist for cleaner
production and cost saving in the vegetable oil
processing industry. Conventional oil extraction
and refining processes, which involve multiple
unit operations, have several disadvantages.
These include complex separation steps, energy-
intensive operations, the requirement for large
amounts of water and hazardous chemicals
and the potential of generating large quantities
of wastes. Conventional oil extraction mostly
uses hexane. High energy consumption, high
temperature operation, the important portion
of the nutritional oil components being lost
and large amount of water during the process
of refining result from the use of hexane. There
is a dire need for the development of separation
techniques that will facilitate recovery of
vegetable oil from spent bleaching earth while
sustaining the nutritional components naturally
present in the vegetable oils and reducing
the negative impact of oil processing on the
environment. This paper reviews the state-of-
The art technologies for recovery of vegetable
oil from spent bleaching earth. It presents the
development of the technologies chronologically
and compares their relative merits from aspects
of capital requirements, resource utilisation,
cleaner production, sustainability and economy.
The paper ends with a look at supercritical fluid
extraction (SFE and ways of treating spent
earth as suggested by other authors have been
recorded (Dijkstra, 2020). Despite SBE research
efforts, a review of synthesis, properties and SBE
applications is not common. This review paper
provides insight into SBE synthesis through
activating bentonite and the bleaching process,
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properties, characterisation, and applications.

Production of Spent Bleaching Earth

This section explains the bentonite structure, and
different approaches to bentonite activation and
bleaching procedures are also discussed. This
will help to understand this waste’s chemical
and physical properties, and the reader will
relate the properties of spent bleaching earth
to its origin. It will also help to compare one
activation method over other given methods.

Bentonite Structure

Bentonite, named after Fort Benton, Wyoming,
whose largest sources are found (Moosavi,
2017), consists mainly of crystalline clay
minerals and other non-clay minerals (Onal &
Sarikaya, 2007).

It has two tetrahedral silica layers
sandwiching a central octahedral alumina layer
attracted to each other by electrostatic forces
through exchangeable cation balance (Ca*,
K*, Mg* and Na") as presented in Figure 2.
Isomorphous substitution of Fe** or Mg?* for AI**
in the octahedral layer and AI** for Si** in the
tetrahedral layer results in a negative charge on
the surface of the clay (Eren et al., 2009) with
cations (Na™ and Ca?") balancing the structure
and surrounding edges as well as positioned
between the layers.

Bentonite Acid Activation

Bentonite activation is the physical or chemical
modification applied for bentonite to adsorb
impurities and colouring matter in oil with an
increase in surface area of 200-300 m*/g and
pore diameters ranging from 2—6 nm (Figure 3).
At first, exchangeable cations are replaced by H
ions, followed by Al, Fe and Mg ions leaching
from the tetrahedral and octahedral sheets with
the silica groups remaining intact (Steudel
et al., 2009). Therefore, activation involves
exchangeable cations substitution from the
octahedral sheet of Mg?*, Fe?* and Al** against
protons.

Journal of Sustainability Science and Management Volume 19 Number 3, March 2024: 192-220
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Figure 2: Bentonite and activation of the bentonite reaction mechanism
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Figure 3: Summarised acid activation process

Several researchers have investigated the acids mainly H,SO, and HCI with H,SO, being
activation of bentonite using varied parameters favoured over HCI because of cost reasons. The
(Table 1). Although acid activation improves the  properties of activated bentonite are largely
structure of bentonite, it usually involves high affected by variables which include the nature
temperatures (up to 105 °C) and concentrated of inorganic acid (Anyikwa et al., 2022),
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temperature, dry acid/clay ratio, treating time,
particle size of bentonite, drying temperature of
activated clay and washing procedure (Dias &
Santos, 2001).

From the literature, surface area and
porosity increase with increasing concentration
of acid (Foletto et al., 2011; Motlagh et al.,
2011Iran, was submitted to acid activation
with sulphuric acid. Sample aliquots (5gr;
Usman et al., 2012; Alamery & Ahmed, 2021)
and treatment time (Alamery & Ahmed, 2021)
amounting to a decrease in pH from raw to acid
activated clay due to cation substitution in the
octahedral and tetrahedral sites. Surface area
increases because at first, there are unoccupied
spaces after A, Mg?* and Fe*" leave the
layers then as activation proceeds, larger empty
spaces are formed resulting in micropores
being changed to mesopores. In some locations,
decomposition of the crystal structure begins to
occur with some of the mesopores disappearing
hence reduction in specific surface area. Further
acid concentration increases result in crystal
structure destruction because of Al**, Mg?", and
Fe** leaching from the octahedral sites, hence
causing a decrease in surface area. Optimum
activation conditions for maximum bleaching
efficiency were reported as 98% H,SO, acid
concentration (34%), temperature (90 °C) and
contact time (7 h) after an investigation using 3°
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factorial design (Didi et al., 2009)the effects at
80 °C of three key parameters were investigated,
namely the effects of the acid concentration in
aqueous solution, the contact time and the clay
to acid (S/L and IN HCI acid concentration,
contact time (6 h), 4% moisture and 0.5 solid to
liquid ratio using 2* full factorial design (Kirali
& Lagin, 2006). Table 1 summarises the methods
of acid activation of bentonite.

Bleaching Process

The bleaching process involves the adsorption
of oil impurities because of the acidity and the
high surface area of activated bentonite since
it is now more chemically active and efficient
(Vaisali et al., 2015).

Several = mechanisms are  involved
during bleaching, which includes chemical
bonding (ionic or covalent bonds), physical
adsorption (Van der Waals forces) and chemical
decomposition (Chakawa et al., 2019) as shown
in Figure 4. The bleaching process is affected by
the quantity and quality of activated bentonite,
mixing, residence time, temperature, dosage rate/
amount, and vacuum or atmospheric pressure.
The acid concentration used for bentonite
activation affects bleaching efficiency. When
acid concentration increases, it improves the
bleaching capacity by removing cations in the

Adsorption

Sorbent binds a contaminant physically through surface attraction
(Van der Waals” forces), chemically by electrochemical bonding to
the clay surface (chemisorption) and trapping of contaminants by
molecular sieves during filtration.

Catalysis

Contaminants become degraded by interaction with the
clay surface. Clay/oil interaction decompose peroxides
into volatile oxidation by-products.

Absorption

Intra-granular pores are filled with oil
together with contaminants in it

Figure 4: Bleaching mechanisms
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(Didi et al., 2009)
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octahedral sheet and, consequently causes the
attack to the bentonite structure (Foletto et al.,
2011; Motlagh et al., 2011)Iran, was submitted
to acid activation with sulphuric acid. Sample
aliquots (5gr. The quality of bentonite can also
be improved by removing the moisture content
using a vacuum system to prevent contact
with oxygen in the air. Activated bentonite
may catalyse oxidation at high temperatures in
aerobic conditions and this causes degeneration
of oil thus reducing its shelf life (Usman et al.,
2012). Under vacuum conditions, bleaching
contact time ranges from 20-40 min and
temperatures vary from 80-120 °C (Table 2).

An increase in contact time and temperature
results in a higher bleaching efficiency because
of a decrease in oil viscosity resulting in an
improved dispersion of particles hence more
flowability and clay-oil interactions. Initially,
vacant surface sites will be available to
remove impurities but will later be occupied
as bleaching progresses, reducing bleaching
capacity. Dosage increase results in an increase
in bleaching efficiency as more adsorption
sites become available but once equilibrium is
reached, there will be no pigment removal. The
dosage of bleaching earth also varies with the
oil type. After bleaching, the bleaching earth-oil
mixture is filtered first using filter plates. The
SBE is then blown to remove the oil from the
earth, followed by removal of the earth from the
plate filters and then stored or disposed of.

Structural Characterisation of
Bleaching Earth

Spent

The following spectroscopic techniques can be
used to evaluate and characterise SBE; X-Ray
Diffraction (XRD), Fourier Transform Infrared
(FTIR) and Thermogravimetry Analysis (TGA)
for the identification of crystalline phase,
functional groups, thermal decomposition or
thermal stability, respectively. X-ray diffraction
analysis (XRD) is a microstructural analysis
providing crystallographic structure information,
physical properties, chemical composition of
a material and includes atomic arrangements.

Journal of Sustainability Science and Management Volume 19 Number 3, March 2024: 192-220
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SBE X-ray powder diffraction patterns in Figure
5(a) show the presence of quartz impurities
and peaks of the montmorillonite (M) (at 20
= 20.89° and 26.65°)(Mana et al., 2011). Fired
SBE waste (950 °C for 4 h) for making bricks
showed the presence of cristobalite, anorthite,
dolomite and muscovite (Eliche-quesada &
Corpas-iglesias, 2014).

From the literature, diffraction peaks of SBE
were detected at 26 = 8.5°, 13.8°, 16.5° 19.8°,
21.5° 23.1° and 27.6° (Tang et al., 2017). The
infrared spectrum of absorption and emission of
liquid, solid, and gas is obtained by FTIR, and
it helps researchers get information about the
intensity and wavelength of absorption and the
functional groups present in a given compound.
SBE absorption bands at 3552, 3436 and 1631
cm! are a result of -OH stretching and bending
vibrations of the adsorbed water and absorption
bands at 1744 cm™! are attributed to stretching
vibration of the carboxyl groups (Tang et al.,
2017). Strong bands attributed to residual oil
in SBE are indicated at wavelengths (2914
and 2853 cm') due to -CH, symmetric and
asymmetric stretching, -C=0 stretching (1736
cm™) and -CH, rocking bending (716 cm™).

12000
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4000 -

2000+

0 T T T T . T , T
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TGA is a powerful technique for
understanding the thermal decomposition of
materials. Changes in the weight of a specimen
are measured under predetermined heating
rate and temperature conditions. Thermal
decomposition of SBE displays three peaks
(Yuan et al., 2020) that is, mass loss at 278v°C
due to evaporation processes, with the evolution
of oils or volatile products from the SBE sample,
Figure 6. At temperatures of 341 °C and 400 °C,
the peaks can be attributed to the burning and
decomposition of SBE organic content (Mana
et al., 2011; Eliche-quesada & Corpas-iglesias,
2014). Heating treatment at 500 °C confirms
the removal of residual oil completely (Plata et
al., 2020). Another author (Sapawe & Hanafi,
2018) highlighted a four-step weight loss, with
the first step corresponding to the evaporation
of adsorption water molecules and OH™ groups
which are chemically bonded as a result of the
bleaching process which produces SBE in an
anhydrous condition, with second and third step
being associated to burning and decomposition
of organic materials (oils and volatile products)
and residual oils carbonisation respectively.
The fourth step is attributed to structural silica

hydroxyl groups released from bentonite
structure.
SBE

-~ 797

9 APTAC ms,‘d“ !
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Figure 5: (a)XRD of TSBE (treated spent bleaching earth), SBE (spent bleaching earth) and VBE (virgin
bleaching earth) (Mana et al., 2011) (b) SBE FTIR spectra (Tang et al., 2017)
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Figure 6: TGA spectra of spent bleaching earth (Eliche-quesada & Corpas-iglesias, 2014)
(Sapawe & Hanafi, 2018)

Spent Bleaching Earth Properties

This section discusses the properties of spent
bleaching earth as an ideal material for different
technologies. The reader will understand SBE
important features as a perfect material for other
technologies. SBE has high carbon content,
creating good energetic contribution to any
firing process. It has a higher heating value
of 72.575 kl/kg (Eliche-quesada & Corpas-
iglesias, 2014) due to bleaching earth’s high
surface area which can adsorb more oil and
also expose oxygen to this residual oil during
combustion reactions therefore, the high heating
value is mostly due to the residual oil in the
structure. The acidic, catalytic properties and

H o]
H—'|C—0—t|.'."—Ra
o
H—C—O—g—Rb + HO —»
o
H—?—O—I'.":-Rc
H
Triglyceride

trace heavy metals in the clay speed up the
decomposition of hydroperoxides in residual
oil and this ultimately results in less energy
required during firing processes since FFA in
the residual oil will be in an advanced oxidation
state and hence oxidises more rapidly (Beshara
& Cheeseman, 2014b).

SBE is rich in lipids attainable from the
bleaching process and volatile solids (from
adsorbed oil organic compounds) which is
attributed to degradable organic matter for
biogas production (Moshi, 2017). High ash
content in SBE stresses mixing and pumping
equipment during biodigestion.

H o
H—C—0—H Ho—C—R,
| 0
H—C—0—H + HO—(UJ—Rb

i
H—C—0O—H HO—C—R¢
H
Glycerol Fatty acids

Figure 7: Reaction mechanism of lipids hydrolysis to form fatty acids and glycerol
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Residual oil in SBE is a major advantage of
this waste as a substrate in anaerobic digestion.
A high C:N ratio indicates a lack of nitrogen in
SBE, as shown in Table 3. MgO and CaO in SBE
are due to ionic forms of Mg and Ca saturated in
the structural layer of SBE. Phosphorus content
(Table 4) in SBE is because of the bleaching
process of oil in the form of inorganic phosphate
(H,PO, or HPO,*). The essential minerals (Mn,
Fe, Ca, Mg, Ti) and beneficial elements (Si, Na)
play an important role as soil supplements for
good plant growth.

Hydrolysis of lipids will lead to the
formation of long-chain fatty acids and glycerol
which will be converted to hydrogen and acetate
and finally to methane gas by acidogenic,
acetogenic and methanogen bacteria. The
isomorphous nature of SBE reduces the
inhibition effect caused by long-chain fatty acids
adsorption onto the microbial surface which
affects nutrient transportation into a cell (Pereira
et al., 2005). Phosphorus in residual oil in the
SBE accelerates gas production in anaerobic
digestion by activating many microorganisms
in biological processes (Lei et al., 2010with
biogas or methane yields of (0.33-0.35; Moshi,
2017). Trace elements in SBE, as well as

206

minerals as part of clay material, are important
for anaerobic digestion and iron present in SBE
is an essential enzyme co-factor involved in the
biochemical route of anaerobic digestion and is
also considered to be among the trace elements
that help stabilise the anaerobic digestion
process and improve the growth of methanogens
(Radhakrishnan et al., 2011; Mussoline, 2014).

SBE is acidic (Table 3), hence it can be
added to alkaline soils to balance the pH. Cations
present in SBE based in the structural layer are
necessary for plant growth. It has a high cation
exchange capacity (Loh et al., 2015) due to its
substitutions of Si*" and AI** with lower charge
cations, for example Fe?* or Mg?" which can
hold and release NH," and reduce leaching of N
nutrient (Cheong et al., 2013). High P content is
attainable from the crude oil bleaching process
and will be inorganic phosphate HPO,> or
H,PO;?. Blending SBE with other fertilisers
enables the exchange of micronutrients in the
soil due to metal adsorption and desorption by
silanol and aluminol groups in the clay material.
SBE has a high C:N ratio; hence blending it with
N-rich organic material improves nutritional
balance (Loh et al., 2015).

Table 3: Summary of SBE characterisation from 2010 to 2020

Characterisation parameter

Results (wt.% unless specified)

References

2.6%
2.6%
16%
1.8%
7.92%
1.94%
37.45%
56.9%
70.87%
60.50%

Moisture content

SiO

(Beshara & Cheeseman, 2014b)
(Beshara & Cheeseman, 2014b)
(Suhartini et al., 2011)

(Kheang et al., 2013)

(Yuan et al., 2020)

(Moshi, 2017)

(Mana et al., 2011)

(Kheang et al., 2013)

(Yuan et al., 2020)

(Moshi, 2017)
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ALO, 8.01%
9.24%
11.83%
9.80%
Carbon 17.4%
26.99%
15.5%
28.52%
Nitrogen 0.06%
0.06-0.71%
0.48%
0.08%
C:N 293:1
290:1
256.5
pH 5.33
4.5-5.3
K,0 0.27 +0.02%
CaO 3.58 £ 0.36%
MgO 1.55+0.06%
Cu 41.4+0.6%
Zn 30.1 + 1.7 ppm
Mn 359 £ 4 ppm
Fe 10026 + 663 ppm

(Mana et al., 2011)
(Kheang et al., 2013)
(Yuan et al., 2020)
(Moshi, 2017)

(Loh et al., 2015)
(Mana et al., 2011)
(Yuan et al., 2020)
(Moshi, 2017)

(Loh et al., 2015)
(Kheang et al., 2013)
(Yuan et al., 2020)
(Moshi, 2017)

(Loh et al., 2015)
(Kheang et al., 2013)
(Moshi, 2017)

(Loh et al., 2015)
(Kheang et al., 2013)
(Loh et al., 2015)
(Loh et al., 2015)
(Loh et al., 2015)
(Loh et al., 2015)
(Loh et al., 2015)
(Loh et al., 2015)
(Loh et al., 2015)

The high cation exchange (36.02 + 0.15
cmol kg') exhibited by SBE improves the
degraded charge properties of soils.

Deoiled SBE can be reactivated with an
acid to enlarge the surface area for adsorption
of impurities in biodiesel production (Fahmil et
al., 2014), used as animal feed by mixing SBE
with soya meal (Huang & Chang, 2010) or it can
be a raw material for the bleaching process. For
animal feed, 3% (Tippkétter e al., 2014) to 10%
(Prokopov & Mechenov, 2013) of SBE can be
added to animal feed for enrichment. Table 3 and
Table 4 summarise the chemical composition
of SBE analysed by different authors and the

results of the composition of SBE residual oil,
respectively.

Application of Spent Bleaching Earth

The presence of residual oil and free cations
in SBE generates different applications, which
preserves the environment, minimises waste
disposal, reduces environmental pollution,
lowers production costs, recycling, and
maintains the supply chain as explained in Table
5. It was found that all applications are suitable
and effective for treating spent bleaching earth,
however each approach has different advantages
and disadvantages. It is therefore, advisable to

Journal of Sustainability Science and Management Volume 19 Number 3, March 2024: 192-220
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Table 4: Characterisation of residual oil in SBE

Characterisation Results References

Free fatty acids, FFA (%) 12.6 (Kheang et al., 2013)
13.01 (Moshi, 2017)

11.5 (Kheang et al., 2006)

24.1 (Huang & Chang, 2010)

Peroxide value, PV (meq/kg) 34 (Kheang et al., 2013)
2.98 (Moshi, 2017)

3.1 (Kheang et al., 2006)

Phosphorus, P (mg/kg) 18.7 (Kheang et al., 2013)

19.3 (Kheang et al., 2006)

Iron, Fe (mg/kg) 1.24 (Kheang et al., 2013)

0.22 (Kheang et al., 2006)

Copper, Cu (mg/kg) 0.38 (Kheang et al., 2013)

0.32 (Kheang et al., 2006)

f-carotene (mg/kg) 6 (Kheang et al., 2013)
0.401 (Moshi, 2017)

3 (Kheang et al., 2006)

Total vitamin E (mg/kg) 38.8 (Kheang et al., 2013)
39.03 (Moshi, 2017)

0 (Kheang et al., 2006)

select an appropriate approach based on the
equipment and production of desired products.
Many aspects in the given literature are
untested yet, such as application effects to real
environment and parameters optimisation. Spent
bleaching earth can make good, biodegradable
lubricating grease and less toxic. Studies have
proved that the incorporation of SBE in making
bricks results in a decrease in bulk density of
1341 kg/em?®, lowering thermal conductivity
(Sutcu et al., 2014). Additionally, the organic
matter in SBE increases interconnected surface
porosity, water adsorption and water suction.
Higher water absorption values, lower bulk
density and high content of amorphous phase
add up to lower thermal conductivity, which acts
as an insulator.

Residual oil contained in SBE can be
used to develop biodiesel by in situ trans-
esterification process. In this process, alkaline
catalysts and methanol are used as the reactants
for biodiesel and concurrently as the extraction

solvent, reducing process steps and shortening
the reaction time (Tuntiwiwattanapun et al.,
2017). Biodiesel is also produced from residual
oil in SBE through two-step esterification with
the biodiesel product having a lower iodine
number and higher cetane number compared to
biodiesel from refined vegetable oils because
of saturated fatty acids like palmitic acid in
residual oil (Huang & Chang, 2010). Deoiled
SBE can be reactivated with an acid to enlarge
the surface area for adsorption of impurities in
biodiesel production (Fahmil et al., 2014), used
as animal feed by mixing SBE with soya meal
(Huang & Chang, 2010) or can be a raw material
for the bleaching process.

Long-chain fatty acids in residual oil
are degraded anaerobically to H, and acetate
which are then modified to methane. Anaerobic
digestion encompasses metabolic reactivity
chains such as hydrolysis Eq. (5), acidogenesis
Eq. (6, 7, 8), acetogenesis Eq. (9, 10, 11) and
methanogenesis Eq. (12, 13, 14).
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(CH,,O)n+nH,0— CH O+ nH, %)
CH O, < 2CH,CH OH+2CO, (6)
CH O, +2H, — 2CH CH,COOH +2H,0 7
CH 0, — 3CH,COOH ®)
CH,CH,COO +3H,0 «> CH,COO + H'HCO, + 3H, )
CH.O,+2H,0 < 2CH,COOH +2CO,+ 4H, (10)
CH,CH,OH +2H,0 < CH,COO +3H, + H" (11)
CH,COOH — CH, + CO, (12)
CO,+4H,— CH, +2H,0 (13)
2CH,CH,OH + CO,— CH, +2CH,COOH (14)

Trace elements in SBE improve
performance with a faster substrate turnover
and overall degradation process and prevent
inhibition. Production of biogas through co-
digestion of SBE with any other substrate
contributes to utilising pollutants to be dumped
into the environment, saves costs which results
in improved industrial profitability since SBE
was to be transported to landfill sites from the
production plant and energy requirements are
reduced because of biogas production. The
oil in SBE is not extracted and is transformed
for anaerobic digestion, producing biogas. A
significant amount of biogas is economically
produced from SBE (Moshi, 2017). Furthermore,
SBE can be co-digested with manure, energy
crops, industrial and municipal waste for biogas
production and satisfactory levels of potassium
and phosphorus are expected to improve the final
bio-slurry after anaerobic digestion for fertiliser
application. Briquettes are compressed blocks
used as fuel. Compression allows the biomass
to burn longer than if it were left loose. The
high calorific values exhibited in SBE briquettes
are due to residual oil in the waste. SBE can be
blended with other fertilisers which enhances
the exchange of micronutrients in the soil due
to the presence of aluminol and silanol groups.
Pyrolysis of SBE results in bio-oil or pyrolytic
oil production, which is an alternative to fuels
in industry.

Gap of Knowledge

Utilisation and recycling of SBE has been
reviewed and discussed (Abdelbasir et al.,2023).
Whereas different authors comprehensively
cover several investigations on application of
SBE, other types of research questions have not
been addressed adequately yet in the domain
of pyrolysis of SBE. It is noted that literature
highlighted pyrolysis of SBE to yield bio-oil
with good similarity to petroleum-based fuels
(Boey et al., 2011), the surface area of resulting
solids after pyrolysis of over 100 m?g™! (Tsai et
al., 2002), solids after pyrolysis of SBE having
the capacity to adsorb tetracycline hydrochloride
from aqueous solution (D. Wan et al., 2019)
and high-quality bio-oil produced by catalytic
pyrolysis of SBE (Xu ef al., 2020).

Co-pyrolysis involves different materials
as a feedstock (Abnisa & Wan Daud, 2014;
Situmorang et al., 2021) under the same
operating conditions (Ahmed & Hameed, 2020),
thus combining favourable feedstock properties.
With a few exceptions, co-pyrolysis studies of
SBE with biomass wastes are deficient in the
literature. Co-pyrolysis of SBE and polymeric
waste (Abbas-abadi et al., 2020), SBE and
corncob lignin (Wan et al., 2022) and SBE
with low-density polyethylene (Zhang et al.,
2022) were studied and recorded. As a result, an
important gap that future researchers should fill
is considering co-pyrolysis of SBE with biomass
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wastes to help reduce solid waste disposal
challenges in the edible oil production industry
(Adeboye et al., 2021)that is polystyrene (PS.
More rigorous research is required in this area of
study, which will greatly impact improvement
in terms of quantity and quality of bio-oil yield
as well as make it more cost effective. Many
studies have shown that the co-pyrolysis of
biomass has successfully improved the oil
quantity and quality without any improvement in
the system process. Co-pyrolysis has attractive
performance/cost ratios (Abnisa & Wan Daud,
2014) due to synergistic effects from the reaction
of different feedstock during the process. A
specific suggestion is to optimise and model
co-pyrolysis parameters: reaction time, reaction
temperature and feedstock ratio on the pyrolysis
yield using a central composite experimental
design (Adeboye ef al., 2021)that is polystyrene
(PS. Developed models would then be evaluated
using statistical parameters and response surface
curves. More suitable models can be developed
from studying these aspects to yield improved
co-pyrolysis products (Uzoejinwa et al., 2019).

Conclusion

This review summarised the synthesis,
properties, characterisation and application of
SBE. SBE is an acidic alumino-silicate mineral
generated in an oil refinery after a bleaching
process containing 20-40% residual oil with high
cation exchange capacity. Properties exhibited
by SBE include high heating value, lower
bulk density and high content of amorphous
phase. Its generation is directly connected to
environmental, economic and social activity and
therefore it is pertinent to reduce its disposal and
generate high-quality waste streams for reuse
and recovery, which maximises both the value
and the volume of resources within economies.
Its treatment promotes edible oil production and
other stakeholders who feed into the system
to provide raw materials for oil production.
Treatment of SBE supports efficient use of
natural resources, thus securing animal feed,
availability of food, renewable raw materials,
soil fertility, and energy provision.
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