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Introduction 
Water is the most vital and valuable resource 
for human life. Therefore, sustaining a clean 
water supply has long been prominent in the 
national and international agendas. Poor basin 
management for surface water resources and 
long drought periods are the global issues 
that contribute to the water shortage. Thus, 
groundwater is an alternative natural resource 
that plays a vital role in ensuring the health of 
urban and rural residents, fostering sustainable 
economic and social growth, and preserving the 
ecological balance. The demand/requirement 
for groundwater has grown tremendously due 
to population growth, advanced irrigation 
methods, and industrial uses. Thus, water supply 
management and sustainability of groundwater 
resources must be considered to detect the 

potential groundwater sources, thus ensuring 
continuous water supply. Furthermore, major 
cities in Malaysia are experiencing challenges 
in supplying potable water due to population 
growth, rapid industrialisation, surface water 
pollution, and drought factors. The groundwater 
level has dropped by 0.5-3 metres in most 
districts in Selangor, including Klang, Langat, 
and Bernam basins due to extreme heat. The 
groundwater level is also expected to drop by 
0-1 metre due to changes in land use (Mridha et 
al., 2020).

Conventionally, the hydrological test 
is required for groundwater identification 
processes, which involve extensive drilling, 
ground surveys, and geophysical technologies 
(Serele et al., 2020). These approaches are 
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expensive, time-consuming, and labour-
intensive. Nowadays, the potential location 
of groundwater resources can be detected by 
using geospatial approaches. The example 
of the sophisticated approaches in geospatial 
technology are Unmanned Aerial Vehicle 
(UAV) mapping (Zamari et al., 2019) and 
Ground Penetrating Radar (GPR) System 
(Elsheakh & Abdallah, 2019) and Remote 
Sensing technology (Sibanda et al., 2015). 
Currently, Remote Sensing technologies with 
the integration of Geographic Information 
Systems (GIS) have been widely employed in 
groundwater detection over the last few decades 
(Singh et al., 2019). Several researchers (Jenifer 
& Jha, 2017; Misi et al., 2018; Ifediegwu, 2022; 
Sajil Kumar et al., 2022) use the Integrated 
Remote Sensing (RS) approach, GIS, and Multi-
Criteria Decision Analysis (MCDA) techniques 
to identify potential groundwater areas and 
uncover suitable artificial recharging sites. They 
discovered that MCDA is an effective method 
to determine the GWP areas (Misi et al., 2018; 
Osinowo & Arowoogun, 2020).

Based on the hydrological and geological 
features, the groundwater parameters can be 
classified into direct and indirect indicators. 
Rainfall is the most dominant factor for an area’s 
groundwater potential, as it is the primary source 
of water in the hydrological cycle (Ibrahim-
Bathis & Ahmed, 2016a). In addition to rainfall, 
groundwater occurrence and movement depend 
on the geological setting (Jhariya et al., 2016). 
As reviewed by Nigussie et al. (2019), the 
primary indicator, i.e. hydrological features are 
related to the establishment of groundwater such 
as recharge and discharge zones, soil moisture, 
and vegetation. The secondary indicators, i.e. 
geological features are associated with rock 
and soil type, structures including fracture 
zones, landforms, and drainage characteristics. 
Delineation of groundwater using spatial data 
involves multiple attribute decision-making 
which requires a group of parameters that 
are appraised on the core of competitive and 
disproportionate criteria (Malczewski, 1999). 
Several parameters must be considered, 
including soil moisture, soil texture, geological 

unit (Nigussie et al., 2019), soil drainage, slope, 
lithology and aspects (Singh et al., 2019), slope, 
topography, stream network and lithology 
(Mokadem et al., 2018), and drainage systems, 
rainfall, altitude (Misi et al., 2018) which play 
a crucial role. Díaz-Alcaide and Martínez-
Santos (2019) reveal a group of parameters 
which consistently utilised by many researchers 
including lithology (geology), geomorphology, 
soil, land use/land cover, topography, lineaments, 
drainage and slope-related variables, rainfall 
and groundwater recharge.

However, research from previous studies 
used various types of either optical or 
microwave sensors in extracting soil moisture 
parameters, including Sentinel images (Sutariya 
et al., 2021), Landsat 8 (Naghibi et al., 2017; 
Chen et al., 2018; Wang et al., 2021), MODIS 
(Parks et al., 2017; Abrams et al., 2018) and 
from in-situ method (Sharma et al., 2018; 
Sutariya et al., 2021). Entezari et al. (2019) has 
reported that the coefficient of determination 
of soil moisture content using Landsat 8 image 
is 0.959, while Sutariya et al. (2021) has 
achieved the coefficient of determination for 
similar parameter from Sentinel 1A image up 
to 0.788. Thus, the purpose of this research is 
to investigate the capability of various sensors 
from microwave and optical remote sensing 
images in extracting soil moisture content for 
GWP areas in Hulu Langat. Sentinel 1A and 
Landsat 8 images are employed in this study 
to extract soil moisture. Ten (10) conditioning 
factors have also been included in determining 
GWP areas over the study region.

Materials and Methods
This research is divided into five (5) phases: 
(1) study area and software selection; (2) data 
acquisition; (3) soil moisture estimation using 
Sentinel 1A and Landsat 8, (4) GWP area 
determination; and (5) data validation. In Phase 
1, Hulu Langat is selected as the study area, 
and SNAP and ArcMap 10.5 software are used 
in this research for soil moisture extraction and 
the GWP area determination process. Phase 2 
involves a data acquisition process for preparing 
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the thematic data layers including Sentinel 
1A, Landsat 8, TanDEM-X, geological map, 
rainfall data and tube wells distribution. Phase 
3 focuses on data processing and extraction of 
conditioning parameters layers. Soil moisture 
content is extracted from Sentinel 1A and 
Landsat 8 satellite images. Thematic layers, 
such as curvature, slope, elevation, drainage 
density, lineament density, and geomorphology 
are derived from DEM data with 30m resolution. 
Finally, geological units are derived from 
geological maps through the digitisation process, 
and mean monthly rainfall is interpolated from 
rainfall station data. In Phase 4, two (2) GWP 
areas are developed from both sensors using the 
APH approach by determining the weightage for 
every thematic layer. In Phase 5, the results are 
validated using tube well data. Figure 1 shows 
the summary of the research methodology 
implemented in the study.

Conditioning Parameters Preparation
Delineation of GWP areas involves ten (10) 
different conditioning parameters retrieved 
from several sources. Soil moisture content is 
retrieved from Sentinel 1A and Landsat 8; slope, 
geomorphology, drainage density, lineament 
density, elevation, and curvature are derived 
from TanDEM-X data; geological units are 
derived from geological maps; rainfall data 
are interpolated from rainfall station data; and 
LULC is derived from Landsat 8.

Soil motion estimation: Soil moisture 
estimation from both optical and microwave 
images is processed from Sentinel 1A and 
Landsat 8 images. Sentinel 1A images for 
February, April, and June 2021 with a spatial 
resolution of 10m are retrieved from the 
Copernicus scientific data hub and the images 
are utilised for soil moisture extraction. 
Pre-processing procedure which involves: 

Figure 1: Research methodology workflow
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(1) applying orbit file to satellite images; 
(2) removing thermal and border noise; (3) 
performing radiometric calibration, multi-
looking, and terrain correction; and (4) 
converting to dB in Sentinel Application 
Platform software (SNAP). Three (3) images 
retrieved from Landsat 8 satellite from February, 
April, and June 2021 are downloaded from the 
USGS website and utilised in the soil moisture 
extraction process using ArcGIS software. All 
the equations derived using ArcMap’s raster 
calculator and Land Surface Temperature (LST) 
are determined using band 10 TIRS and band 
4 with 5 OLI. The Landsat 8 (bands 4 and 5) 
image processing is included to determine the 
NDVI proportion of vegetation and land surface 
emissivity, while band 10 TIRS data are used to 
determine brightness temperature before all of 
the bands are combined to retrieve the LST in 
the study area.

Slope: Slope is the rate of elevation changes, 
and it is also a key element in determining 
groundwater potential zones. High runoff and 
surface soil erosion are caused by increased 
slopes (Ibrahim-Bathis & Ahmed, 2016). Slopes 
are generated from 30m DEM resolution by 
creating surfaces from the surface analyst tool in 
ArcGIS. The slope of the groundwater potential 
map has been reclassified into five categories, 
which are 0-2, 2-5, 5-10, 10-30, and >30 degrees 
based on the slope elevation.

Drainage Density: Drainage density has 
been calculated from the retrieved DEM by 
dividing the entire length of the stream by its 
contribution area. The line density tool included 
in the ArcGIS toolbox is used to map the drainage 
density in Hulu Langat. Firstly, Fill is created 
from DEM data, and it is utilised to construct 
flow direction. Then, flow accumulation is 
created, followed by stream order. The streams 
are then converted into Features to create line 
density.

Lineaments Density: Lineaments are 
extracted from a 10m SAR image, and hill shade 
n-screen digitising is performed in ArcGIS 
using 30m DEM data. The process of creating 
lineament density is divided into three main 

stages. The initial step is to create a hill shadow 
for four (4) azimuths at altitudes of 315-45, 200-
50, 100-60, and 50-90 degrees. A new polyline 
shapefile for lineament is then constructed 
before being categorised into five classes and 
classified according to their suitability for 
possible groundwater accumulation which are 
0-0.26, 0.26 -0.68, 0.68-1.01,1.01-1.40 and 
1.40-1.84.

Elevation: The elevation of the topographic 
surface generated from DEM is classified into 
five (5) classes (Adeyeye et al., 2019).

Curvature: The curvature of the 
topographic surface generated from DEM with 
30m resolution by generating curvature function 
in spatial analyst tool. The curvature is then 
classified into five (5) classes (Nair et al., 2017).

Rainfall: Monthly average rainfall data 
from three nearby stations are utilised to 
interpolate rainfall from February to June 2021. 
The rainfall map in ArcGIS is created using the 
Inverse Distance Weightage (IDW) interpolation 
technique (Ibrahim-Bathis & Ahmed, 2016). 
Before constructing climatic stations, the mean 
of rainfall data is determined, and then, it is 
imported and overlaid with the Hulu Langat 
shapefile.

Geomorphology: The geomorphology unit 
is derived from a high-resolution DEM. In 
ArcGIS, a hill shade is generated, and then 
slopes with (°) units are created. In this 
process, slopes are divided into five (5) classes. 
Landform features, slope, and aerial extent 
are utilised to map five (5) geomorphological 
units: smooth plain (SP), irregular plain (IP), 
escarpment, hills, and mountains (MHE), which 
are evaluated according to the appropriate rank 
of groundwater existence.

Geology: Geology maps of the research 
area are manually digitised. Starting with a 
georeferenced process where the coordinate 
of the geology map is defined. This map is 
classified into five (5) classes, including acid 
intrusive, Devonian, extrusive rocks, Permian, 
and vein quartz.
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Land Used Land Cover (LULC): LULC is 
extracted from Landsat 8 data using supervised 
classification (Nigussie et al., 2019). In this 
process, bands 1, 2, 3, 4, 5, 8, and 9 are utilised, 
stacked, select sampling area, and perform 
classification. Each class is then labelled based 
on the feature categories.

Reclassification Process
Each conditioning parameter has various 
effects on the occurrence of the GWP area. 
Different parameters are allocated to thematic 
layers, which are then converted to raster data 
format using the corresponding attribute. In 
order to satisfy the site-specific prerequisites 
for the AHP analysis, all the transformed 
layers are subjected to reclassification and 
resampling to ensure a consistent cell size of 
10 m. Subsequently, the simplified raster data 

analysis is reclassified, wherein the range of 
cell values is categorised into a singular value 
based on the same rating approach (Nigussie 
et al., 2019). It is conducted to compare and 
assess the most and least appropriate locations. 
All the conditioning parameters and weights are 
inserted into a weighted overlay ArcGIS with a 
1 to 5 evaluation scale as tabulated in Table 1.

Analytic hierarchy process (AHP) and 
Weighted Linear Combination (WLC)
MCDA approach is used in this study to identify 
the groundwater potential zones (Waikar & 
Nilawar, 2014). The rates for the classes as well 
as the weights and ranks for thematic layers, 
are computed using GIS-based multi-criteria 
evaluation based on Saaty’s (1990) Analytical 
Hierarchy Process (AHP). As the potential 
impacts of each thematic layer of the model 

Table 1: Reclassification and rating of layer suitability for groundwater potential zone

Thematic Description Reclassification Values and Suitability Values
for Groundwater Potential Zone Identification

Layer Ranking 1 2 3 4 5
Classification Very Poor Poor Moderate Good Very Good

Geomorphology Landform 
Types

Denudational 
hill

Denudational 
hill

Flood 
plain

Flood plain

Slope Value in 
Degree 

 >30
(Very Steep)

10-30
(Steep)

5-10
(Moderate)

2-5
(Gentle)

0-2
(Level)

Geological Units Types of 
Geological 

Units 

Acid 
Intrusive

Phyllite and 
schist

Schist Schist, 
phyllite, 

limestone

Schist, 
phyllite, 

limestone
Drainage 
Density

Value          
(Km/Km²)
Category

0.0012-
0.0061

0.0061-
0.011

0.011- 
0.0159

0.0159-
0.021

>0.0.026

Lineament 
Density

Density 
(Km/Km²)

<0.027 0.027- 0.54 0.54-0.81 0.81-1.08 1.08-1.35

LU/LC Type Bare land Urban Agriculture Forest Water Body
Rainfall Value (mm) 2,750-

3,000
2,500-
2,750

2,250-
2,500

2,000-
2,250

Elevation Value (m) -41.14 – 
142.15

142.16 – 
314.33

314.34 – 
525.39

525.4 – 
808.66

>808.67

Curvature Value (m) -0.71 – 
-0.211

-0.210 – 
-0.067

-0.066 – 
0.060

0.061 – 
0.234

0.235 – 
0.76

Soil Moisture Class (dB) < -49& > -22 -22 to -18 -18 to 18

GWPA =    x 100
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aquifer recharge in different ways, weighting 
is used to consider the relative importance of 
each element. In this process, the weightage of 
all thematic layers is derived from a pairwise 
comparison reciprocal matrix of judgement. 
Then, the GWP map is generated using the 
weightage overlay method in ArcGIS software 
to identify the GWP area.

Data Validation
In order to determine the accuracy of the 
groundwater potential area, data such as 
borehole yield, hand-dug wells, and springs 
are overlayed with the groundwater potential 
area map (Hussein et al., 2017; Nigussie et al., 
2019). For this study, the distribution of tube 
wells extracted from the hydrological map is 
used for data validation. In this process, the total 
amount of validation and disagreement data and 
the accuracy of the identified prospective zones 
are calculated (Nigussie et al., 2019) using the 
following equation.

and very wet conditions are primarily covered 
by vegetation and water bodies. Soil moisture 
(SMI) extracted from Landsat 8 satellite images 
ranged from 9.62926e-007 to 1, representing 
from dry to wet. SMI values close to zero 
indicate water scarcity and low soil moisture 
content, while values close to one indicate a wet 
area or forest cover with the maximum moisture 
content (Tajudin et al., 2021).

Soil moisture (SMI) extracted from Landsat 
8 satellite images ranged from 9.62926e-007 
to 1, representing from dry to wet. SMI values 
close to zero indicate water scarcity and low 
soil moisture content, while values close to 
one indicate a wet area or forest cover with 
the maximum moisture content (Tajudin et 
al., 2021). SMI content for Landsat 8 is also 
divided into five wetness levels: very dry, dry, 
moderate, wet, and very wet, as indicated in 
Figure 2 (b). Green areas represent very dry 
areas, which cover 3 km2 or about 0.4% of the 
research area, whereas dark blue areas represent 
very wet areas, encompassing almost 4% or 31 
km2 in terms of area in the study region. Most of 
the dry and extremely dry areas are located in 
urban, bare land, and building areas, while wet 
areas are almost entirely covered by vegetation 
and water bodies, which indicates that 429 km2 
represents almost 51% of the study region.

SMI derived from Sentinel 1A image 
showed that the greatest indication was a 
moderate area, covering 303 km2, or about 
36% of the research area, while the lowest was 
very dry at just 5%, covering 44 km2. While 
the greatest indication was wet, covering 429 
km2 and the lowest was extremely dry covering 
31 km2, representing 4% of Landsat 8 image 
extraction. According to Table 2, SMI extraction 
from both sensors demonstrates that Landsat 8 
has better area coverage of good GWP region 
than Sentinel 1A. This is owing to the fact 
that excellent prospective groundwater area 
occurrence covered 51% of the area covered with 
a total of 429 km2, and it covered largely in the 
northeast of the research region, which contains 
the majority of the vegetation area. Sentinel A1 
covers just 241 km2 for a respectable GWP area.

GWPA =    x 100Total Validation – Total Disagreement Data
Total Validation Data[ [

The most effective soil moisture content 
was acquired by computing the correlation 
coefficient in Excel from both maps generated 
by the different soil moisture content sensors.

Results and Discussion
Soil Moisture Content Extraction from Sentinel 
1A dan Landsat 8 images
The backscattering coefficient radar (dB) is 
derived from Sentinel 1A satellite data. The 
decibel values obtained from the processing 
ranged from -39.79 to 33.76. They are then 
divided evenly into five (5) groups indicating the 
condition of soil moisture content: Very dry, dry, 
moderate, wet, and very wet. As represented in 
Figure 2 (a), the soil moisture content from very 
dry to very wet covers 44 km2 (5%), 185 km2 
(22%), 303 km2 (36%), 241 km2 (29%), and 63 
km2 (8%) of the research area, respectively. Most 
of the dry and very dry areas are found in urban 
and developed areas, whereas moderate, wet, 

(1)
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Geomorphology
The geomorphology map of Hulu Langat derived 
from DEM data shows different categories of 
landform conditions. The geomorphological are 
mapped based on five (5) characteristics: Irregular 
plain (IP), smooth plain (SP), escarpment, 
hills, and mountains. Figure 3 (a) depicts that 
most of the study areas are smooth plains and 
escarpments, which are shown in blue and green 
areas. Figure 3 (b) depicts the geomorphology 
maps that have been reclassified into three 
(3) criteria: Mountain, hill, and escarpment 
(MHE), smooth plain (SP), and irregular plain 
(IP), which are graded according to the present 

of groundwater. According to the classified 
image, MHE landforms cover almost 45% with 
covered for 361 km2 of the study area. The SP 
covers 326 km2, which represents about 41% 
of the area, while the IP comprises 14% of the 
area. Based on the geomorphology area, the high 
potential of the GWP area is identified as the 
largest area covered by SP (Hussein et al., 2017).

Geology
Figure 4 shows six geological types: Acid 
intrusive, acid to intermediate, limestone/
marble, schist, and schist phyllite slate and 
limestone extracted from a geological map. 

Figure 2: (a)  Soil moisture from Sentinel 1A and (b) soil moisture from Landsat 8

Table 2: The SMI area retrieved from Sentinel 1A and Landsat 8 image

Image/Indication Sentinel 1A Landsat 8
Area (km2) Percentage (%) Area (km2) Percentage (%) 

Very Dry 44 5 3 0.4
Dry 185 22 100 12

Moderate 303 36 273 32.6
Wet 241 29 429 51

Very Wet  63 8 31 4
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Figure 4 (a) indicates that 75% of the area, 
representing about 624 km2 of the total study 
area, is covered with instructional acid. This 
kind of rock type may be challenging to work 
with due to its compact structure and lack of 
primary porosity (Dar et al., 2021), both of 
which have an impact on the circulation of 
groundwater, which has the potential to result 
in a low potential for groundwater (Thakur 
& Raghuwanshi, 2008). The geological units 
that contain schist and phyllite, limestone, and 
sandstone cover almost 35% of the study area 
at 212 km2, considered to have high-potential 
zones for groundwater, the reclassified geology 
map scale into rank 1 to 5.

Slope
The slope of the study area is retrieved from the 
DEM in degree units and the slope angles are 
divided into five (5) classes: 0°–2° (flat), 2°–5° 
(nearly flat), 5°–10° (mild), 10°–30° (moderate/
steep), and  > 30°. (steep) as depicted in Figure 5. 
It is discovered that the study region is almost 
entirely covered by flat area, particularly in 
the southern region, where the slope degree 

ranges between 0°–2° and 2°–5°. This indicates 
high GWP zones (Javeed & Zameer, 2012). The 
reclassification of slope from poor (> 30 - steep) 
to very good GWP area (0–2 -flat) ranks from 
5-1.

Figure 4: Geology unit

	 Figure 3: (a) Geomorphology	 (b) Reclassified geomorphology
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Lineament Density
Figure 6 depicts the classification of lineament 
density in km2 units which are categorised into 
five (5) criteria: 0–0.26 (very low), 0.26–0.68 
(low), 0.68–1.01 (moderate), 1.01–1.40 (high), 
and 1.40–1.84 (very high). The northeast 
area has high lineament density, while the 
south-central area has low lineament density. 
According to the reclassification of Lineament 
Density, which ranks from poor (1) to the most 
influential (5), most of the study area is covered 
by very low lineament density. Approximately 
only 0.1% of the study area is covered by very 
high lineament density (1.40–1.84).

Drainage Density
Figure 7 indicates the result of drainage density 
that has been classified into five (5) classes: 
0–0.5 km2 (very low), 0.5–1 km2 (low), 1–1.5 
km2 (medium), 1.5–2 km2 (high), > 2 km2 (very 
high) The density drainage then reclassified 
according to the potential of groundwater area 
from very low (1) to very high (5). It is found 
that very high- and high-density areas are 
scattered almost at the centre of the study area. 
Meanwhile, the low drainage density covers 

the edges of the study region. From these 
findings, it can be concluded that the centre of 
the study area with high drainage density has a 
high potential for GWP (Hussein et al., 2017; 
Nigussie et al., 2019).

Figure 5: Slope Figure 6: Lineament density

Figure 7: Drainage density
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Rainfall
As illustrated in Figure 8, the map of Mean 
Rainfall is divided into five categories: 174.74 
mm–179.79 mm (very light), 179.9 mm–184.84 
mm (light), 184.85 mm–189.89 mm (moderate), 
189.89 mm–194.94 mm (heavy), and 194.95 
mm–199.99 mm (very heavy). Based on the 
interpolation of mean monthly rainfall indicated, 
heavy and very heavy rainfall cover the northern 
part of the study area. These areas are considered 
very good GWP areas as high amounts of rainfall 
contribute to the high groundwater content 
(Manap, 2011). Meanwhile, moderate and light 
amount of rainfall occurs at the centre and the 
west part of Hulu Langat, respectively. The 
southern part of the study region experiences 
very light rainfall. 

Elevation
Figure 9 shows 5 classifications of elevation 
which are -41.14-142.15 (very low), 142.16-
314.33 (low), 314.34-525.39 (moderate), 525.4-
808.66 (high), and > 808.67 (very high). The 
classification of groundwater potential area 
is based on the elevation from very low (1) 
to very high (5). The southwest area, which 
covers the area of low elevation, has a very high 
GWP area since water tends to accumulate in 
lower topographies compared to higher terrain 
(Adeyeye et al., 2019). At the same time, the 
northern area is covered by high and very high 
elevations.

Curvature
Figure 10 indicates the five (5) curvature 
classifications, which are -0.71 to -0.21 (very 
low), -0.2 to -0.07 (low), -0.06 to 0.06 (moderate), 
0.07 to 0.23 (high), and 0.24 to 0.76 (very high). 
The analysis indicates that approximately 50% 
of the examined territory possesses a moderate 
groundwater potential, mainly concentrated in 
the southwestern area. The northern region is 
characterised by a prevalence of very low and 
very high curvatures.

Figure 8: Rainfall

Figure 9: Elevation
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Land use/Land cover (LULC)
Land use/Land cover provides a high correlation 
with groundwater occurrence. Figure 11 shows 
the land cover for the study area. Based on the 
results, the study area comprises four (4) distinct 
classes, namely bare land, urban, vegetation, 
and water bodies. The findings indicate that 
vegetation and water bodies cover almost 70% of 
the area, primarily concentrated in the northeast 
region of Hulu Langat, which is recognised as 
a high GWP zone. On the other hand, bare land 
and urban land use account for almost 30% of 
the area, which is estimated to have a low GWP 
impact (Manap et al., 2013).

Weight of Thematic Layer
The importance of the thematic layer has been 
established by considering several previous 
researchers (Jhariya et al., 2016; Ahmadi et al., 
2021; Rahman et al., 2022). Table 3 lists the 
scale values and weights assigned to the different 
classes of various conditioning factors. Elevation 
are considered the most influence factor with 
a weightage of 23%, followed by geology 
with a weightage of 19%. Geomorphology 

can be considered as a dominant factor with a 
weightage of 14%, followed by soil moisture 
(13%), slope (11%), lineament density (6%), 
rainfall (5%), drainage density (4%), curvature 
(3%), and LULC (2%). A single layer represents 
each of the listed parameters. A GPM map has 
been created by spatially manipulating these 
layers.

Groundwater Potential (GWP) Area
Two (2) GWPA maps are generated from soil 
moisture content obtained from Sentinel 1A 
and Landsat 8. All the 10 reclassified thematic 
layers are used to determine the potential 
area of groundwater along with weightage 
assigned using weight overlay in ArcGIS. The 
groundwater potential areas are divided into 3 
classes ranging from poor to excellent. Figure 
12 (a) depicts the GWP potential area in Hulu 
Langat derived from Sentinel 1A soil moisture 
and other 9 parameters.

It is concluded that the areas with excellent 
GWP are in the centre and the west of the 
study area. Most of these areas are flat surfaces 
and covered by water bodies and vegetation 

Figure 10: Curvature Figure 11: LULC
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Table 3: Scale values and weights assigned to different classes for different parameters

No Factor Class Rating Weightage
1 Elevation -41.14–142.15

142.16–314.33
314.34–525.39
525.4–808.66
525.4–808.66

5 (Very high)
4 (high)

3 (Medium)
2 (Low)

1 (Very low)

23%

2 Geology Phyllite_schist_limestone/stone
Limestone marble

Schist_ phyllite_stone
Acidtointermidiate

Instructive Acid

5 (Very high)
4 (high)

3 (Medium)
2 (Low)

1 (Very low)

19%

3 Geomorphology MHE
SP
IP

1 
2
3

14%

4 Soil Moisture 0–0.2
0.2–0.4
0.4–0.6
0.6–0.8
0.6–0.8

1 (Very low)
2 (Low)

3 (Medium)
4 (high)

5 (Very high)

13%

5 Slope 0–2
2–5
5–10
10–30
> 30

5 (Very high)
4 (high)

3 (Medium)
2 (Low)

1 (Very low)

11%

6 Lineament Density 0–0.26
0.26–0.68
0.68–1.01
1.01–1.40
1.40–1.84

1 (Very low)
2 (Low)

3 (Medium)
4 (high)

5 (Very high)

6%

7 Rainfall 174.7–179.8
179.8–184.8
184.9–189.9
189.9–194.9
194.9–200

1 (Very low)
2 (Low)

3 (Medium)
4 (high)

5 (Very high)

5%

8 Drainage Density 0–0.5
0.5–1.0
1.0–1.5
1.5–2.0
> 2.0

5 (Very high)
4 (high)

3 (Medium)
2 (Low)

1 (Very low)

4%

9 Curvature -0.71 – -0.21
0.21– -0.07
-0.07–0.06
0.06–0.23
0.24–0.76

11 (Very low)
2 (Low)

3 (Medium)
4 (high)

5 (Very high)

3%

10 LULC Bare Land
Urban

Vegetation
Water Body

1
2
3
4

2%
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area, which contribute to infiltrations of water 
content (Hammouri et al., 2012). The northern 
and eastern regions of the study areas are 
considered fair GWP areas as these areas 
contain nearly flat to steep slopes. Several areas 
in the northern region of Hulu Langat have poor 
GWP, resulting from high elevation with slopes 
greater than 30°. 

As depicted in Figure 12 (b), the excellent 
GWP area generated from Landsat 8 soil 
moisture and other 9 parameters covers the 
centre of the study area. This area is characterised 
by low-elevation topography and flat terrain, 

as well as covered by vegetation and water 
bodies. The southern region of Hulu Langat is 
covered by fair GWP areas, consisting of high-
elevation topographic regions. However, the 
western and northeastern parts of Hulu Langat 
are characterised by poor GWP areas. These 
regions are marked by moderate elevations, 
schist geological units, and steep slopes, which 
lead to lower GWP levels. 

Table 4 shows the areas of GWP coverage 
for three (3) classes, including poor, fair, 
and excellent in the Hulu Langat region. The 
result from Sentinel 1A images shows that 

Table 4: Groundwater potential area classes area

Sentinel 1A Soil Moisture Landsat 8 Soil Moisture

No. GWPA 
Classes Area (km2) Percentage (%) Area (km2) Percentage (%) Difference 

(km2)
1 Poor 13 1.6 4 0.50 ±9

2 Fair 364 45.8 341 43.0 ±23

3 Excellent 418 52.6 448 56.5 ±30
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approximately 52.3% of the study area has 
excellent GWP, compared to the result from 
Landsat 8 images which indicates 56.5% of the 
study area has excellent GWP. Sentinel 1A and 
Landsat 8 show that 45.8% and 43.0% of the 
study area have fair GWP, followed by 1.6% 
and 0.5% of the study area have poor GWP, 
respectively. 

The GWPA maps obtained from both 
satellites have been validated by overlaying the 
map with tube wells data. Table 5 shows the 
number of tube wells that overlap with GWP 
areas. Twenty-four (24) tube wells have been 
discovered over the Hulu Langat region. The 
final map of areas with groundwater potential 
has been verified based on the distribution of 
tube wells. Out of 24 validation points, a total of 
21 tube wells were located in fair and excellent 
GWP classes. The validation process indicates 

that the accuracy of groundwater potential area 
prediction for both Sentinel 1A and Landsat 
satellites is 85.71%. These results demonstrate 
a strong agreement between the predicted 
GWPA maps from both satellites and the actual 
groundwater regions identified from tube well 
data.

The correlation coefficients are computed 
to determine the optimum sensor for assessing 
soil moisture content. Figure 13 (a) shows the 
regression result of groundwater validation 
between the GWP area extracted from Sentinel 
1A SAR and the tube well tunnel map. A total of 
eight (8) tube wells are located in the fair GWP 
area, while thirteen (13) tube wells are located 
in the excellent GWP area. The r value between 
GPWA retrieved from Sentinel 1A and the tube 
well map is 0.9826, which indicates a high 
correlation between both data.

Table 5: Data validation

Number of Tube wells Overlay with GWP classes area

Sentinel 1A Landsat 8

GWP Classes

Poor 0 0

Fair 8 13

Excellent 13 8

Total 21 21

Accuracy 85.71% 85.71%

	 Figure 13: (a) Regression of yield Sentinel A	 (b) Regression of yield Landsat 8
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Figure 13 (b) reflects the regression result 
of groundwater validation between the GWP 
area extracted from Landsat 8 and the tube well 
map. There is no tube well located in a poor 
GWP area, 13 tube wells are located at fair GWP 
area, and 8 tube wells are located in a excellent 
GWP area. The r value between GPWA retrieved 
from Landsat 8 and the tube well map is 0.3721, 
which indicates a low correlation between both 
data. Thus, it can be concluded that Sentinel 1A 
is a better sensor for estimating the soil moisture 
content for GWP identification (Sutariya et al., 
2021).

Conclusion
This study offers a comprehensive insight into 
an integrated approach that combines satellite 
images and ground-based hydrological data to 
estimate the GWP area in Hulu Langat, Selangor. 
The accuracy of the findings is confirmed by 
validating them with the tube well of the study 
area. The soil moisture results from two different 
sensors effectively identify the GWP region in 
the study area. Sentinel 1A image yields 13% 
excellent GWP area, while Landsat 8 image soil 
extraction yields 8% excellent GWP area. The 
study concludes that GWP identification using 
Soil moisture extraction from the Sentinel 1A 
image is more effective, with a coefficient value 
of 0.98, compared to the Landsat 8 image, which 
has a coefficient value of 0.37. This underscores 
the significance of geospatial techniques in 
accurately determining the GWP area. The 
findings can benefit planners, policymakers, 
and local authorities in future project planning 
to ensure sustainable utilisation of groundwater 
resources.
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