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Introduction 
Mathematical models within statistical 
mechanics are extensively studied with the 
critical phase transition point. The simplest 
model of two states called the Ising model (Ising, 
1925), was solved by Onsager (1944). This was 
generalised by the Q-state Potts model (Potts, 
1952) to study models with more spin states. In 
this paper, we focused on a model represented 
by integer numbers called the ZQ-symmetric 
model, originally investigated based on the 
angle of separation between the spin states by 
Martin (1991). The Q in both models represent 
the number of states under investigation. Here, 
further model modification was made to explore 
and understand more about the model by 
arranging the spin state in arbitrary order.

The ZQ-symmetric model is also related 
to the clock model as both are represented on 
a general discrete planar model where the spin 
takes one of the Q possible values distributed 

around the clock-like circle. The model was 
previously studied by (Martin, 1991; Zakaria, 
2016; Zakaria & Manshur, 2019; Manshur et 
al., 2020) on square and triangular lattices for 
5 and 6 possible states. Here, we are focusing 
on the study for the case of Q = 5, that is, five 
(5) spin states to determine the existence of 
phase transition(s) for the model. To date, 
researchers have managed to obtain exact 
solutions for the one-dimensional (1D) and 
two-dimensional (2D) Ising models, thanks to 
the ground-breaking work of physicists such 
as Lars Onsager (Onsager, 1944). Obtaining 
exact solutions for higher dimensions and more 
complex models is challenging due to increased 
system complexity. As a result, approximation 
methods like renormalisation group, mean-field 
theory techniques and Monte Carlo simulations 
are utilised to study the system.
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Here, we used the finite-size scaling 
technique to approximate the partition function 
for the model and then find the zeros distribution 
of the partition functions. This approach enables 
us to analyse the systems’ phase transition 
and critical behaviour. Fisher’s (1967) and 
Kadanoff’s (1966) works are notable early 
papers that laid the groundwork for finite-size 
scaling. Fisher (1965) was also among the 
earliest to study the complex-temperature zeros 
of partition function. Later, Yang and Lee (1952) 
discovered that the zeros lie on a circle in the 
complex plane, known as the Yang-Lee circle 
theorem. The properties of these zeros, such 
as their distribution and behaviour near critical 
points, provided insights into the nature of phase 
transitions.

To investigate the critical point further, 
we used Monte Carlo Metropolis (MCM) 
simulation for higher lattice size as it often 
provides approximate results faster than other 
numerical methods. The efficiency is notable 
for the model as it is quite complex and 
deterministic calculations are time-consuming. 
The MCM method leverages random sampling 
techniques to explore the parameter space and 
generate statistical data, allowing for faster 
data generation than exhaustive computational 
approaches. Metropolis et al. (1953) developed 
these statistical sampling techniques inspired 
by games of chance as the scientists then faced 
complex mathematical calculations to build the 
atomic bomb through the Manhattan Project.

For the ZQ-symmetric model, previous 
work (Zakaria, 2016; Zakaria & Manshur, 
2019; Manshur et al. (2020) suggested that 
the emergence of multiple linear curves on the 
complex temperature plane could predict the 
existence of multiple phase transitions. Here, 
we extended the study of ZQ-symmetric model 
for  Q = 5 with arbitrary energy lists χ to offer 
further validation regarding the existence of the 
multiple phase transitions for the ZQ-symmetric 
model. We studied the zeros of the partition 
function for the model with increasing lattice 
sizes on a square lattice and simulated the model 
using the MCM method to examine the existence 
of phase transition(s) and to estimate the critical 

temperature(s) Tc for the model. We compared 
the observation from the zeros of the partition 
function with the result of the MCM simulation.

Preliminaries
Here, we present some fundamental concepts 
that serve as the building blocks for our research 
and are vital for comprehending the subsequent 
sections and interpreting the findings.

We take some definitions from the graph 
theory. It is used to represent our system where 
the vertices characterise the position and the 
state of atoms while the edges illustrate the 
interaction of the sites. The model is defined on 
a square lattice, one of the seven lattices known 
as the Bravais lattice, on a 2D crystalline system 
(Shackelford, 2000). The lattice for our system 
has specific boundary conditions (bc).

Definition 1 (Diestel, 2006). A directed graph  is 
a triple Λ = (V, E, f). The  V and  E are set where 
the elements v ∈ V are called the vertices and 
the elements e ∈ E are called edges. The f is a 
function f : E → V x V. Given e ∈ E and u, v ∈ 
V, the images f(e) = 〈u, v〉 give the ‘source’ and 
‘target’ vertex of edge e. The distance d(u, v) is 
the number of edges in the shortest path from 
u to v. Two vertices u and v are called nearest 
neighbours if f(e) = 〈u, v〉 for some e ∈ E i.e., 
when d(u, v) = 1.

Definition 2 (Zakaria & Manshur, 2019). 
Consider a set  of lattice sites, a d-dimensional 
lattice is formed from each side of the nearest 
neighbours. There is a discrete variable σv ∈  {1, 
2, ..., Q} for each lattice site v ∈ V representing 
the spin of the site. We define the position of the 
site as σv ∈  (i | i ∈ {1, 2, ..., n}) where n = |Λ|. 
A spin configuration σ(i) = σ = (σv(1), σv(2),…
,σv(n)) is an assignment of spin value to each 
lattice site. The coordinate function also can be 
defined based on the dimension of the lattice as 
σv = (i, j, ...) where  i, j, ... ∈ Z+.

Definition 3 Consider a graph Λ = (V, E, f) 
on  M x N lattice such that M, N ∈ N.  Let the 
set of vertices V = VI ∪ VB where we call the 
elements of VI as inner sites and elements of VB 
as boundary sites such that; 
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 Boundary condition defines the edges 
for the pair boundary sites u,v ∈ VB. Open bc 
is defined as no edge that exists for the pair 
boundary sites, while the pair boundary sites 
with an edge are called periodic bc.  M x N' 
denote an M by N lattice with open horizontal 
bc and periodic vertical bc.

Definition 4 Let  G, G' be two lattice graphs. 
For the union of two graphs G ∪ G', we have;

VG∪G' = VG ∪ VG'
and

EG∪G' = EG ∪ EG'

where EG ∩ EG'  ≠ Ø.

Definition 5 A physical observable O is a 
measurable quantity or property of a physical 
system that can be observed or measured 
experimentally, providing information about the 
behaviour, characteristics, and interactions of the 
system. It includes magnetisation, susceptibility, 
energy, and specific heat.

Materials and Methods
The ZQ-symmetric model is a model of discrete 
variables representing the magnetic dipole 
moment of the atomic spins. The details of the 
construction of this model are presented by 
Zakaria (2016).

Without loss of generality, few assumptions 
and simplifications are made to ease the 
computation. This model uses a canonical 
ensemble, where the system can exchange 
energy with a heat bath at a specific temperature, 
but other properties will be fixed (Eastman, 
2018). It also neglects the external magnetic 
field, only considering nearest neighbour 
interaction and every nearest neighbour has a 
similar interaction strength J. We are interested 
in studying the ferromagnetic material where the 
atoms of the material favour alignment as the 
temperature of the system decreases. Hence, we 
only considered positive interaction strength. We 

also set the Boltzmann constant  kB to 1 to ease 
the computation. So, the inverse temperature β 
can be defined as β =  . The total energy of the 
system is given by the Hamiltonian as follows:

Definition 6 The Hamiltonian H of the ZQ-
symmetric model is defined as;

1
T

where h =

The  represent floor division for  and 
γr,γ'r ∈ R are the model parameters fixed for a 
given model. Using rescaling factor γr,γ'r enable 
us to calculate the Hamiltonian based on energy 
list χ as in the Equation (2). The energy list χ is 
defined based on the angle separation between 
states at site i and site j. The element of χ can be 
represented as;

where

Previous    studies    considered    cases    where

Here, we covered some cases that discard the 
restriction to provide generality for the model. 
We select particular cases where χ[0] < χ[1]. 
The partition function for this model is defined 
as follows:

Definition 7 The partition function Z of the ZQ-
symmetric model is defined as;

where Ω is a set for all configurations σk for 
graph Λ.

(1)

(2)

(3)

(4)

(5)
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Figure 1: Flowchart of the construction of the Z5-symmetric model starting from the physical material, its 
representation on the finite square lattice with specific boundary conditions, the definition of the sites and 

edges of the system to the main equation (partition function)

The choice of boundary conditions is 
open horizontal bc and periodic vertical bc 
chosen to expedite the computation of the 
partition function Z for each case. The flowchart 
visualisation of the study of the Z5-symmetric 
model and the lattice are described in Figure 1.

The list of cases considered is presented 
in Table 1, where the highlighted cases are the 
new cases. We rerun some cases examined by 
Zakaria (2016) for validation. Both  (3, 1, 0) and  
(3, 2, 0) are chosen as Zakaria (2016) suggested 
some relation of those two models from their 
energy step. The energy step is the difference 
for the consecutive energy value χ[i]. Two new 
particular models are chosen by swapping the 
first and the second elements of the models. 
The cases with lattice sizes 10 x 10', 30 x 30', 
50 x 50',  70 x 70', and 100 x 100' are studied for 
their MCM simulation, while the other cases are 
studied for the zeros of the partition function.

Computation of Zeros of Partition Function Z 
The partition function is computed for each 
configuration of the cases where |Ω| = (M x N)Q.

For simplicity, we calculated h as defined in 
Definition 6 and let  x = eBJ so that

is in polynomial form. For Z(x) = 0, the zeros 
on the complex Argand plane are approximated 
using the Newton-Raphson (NR) method.

The time taken to calculate partition 
function Z as lattice size grows increases 
significantly as |Ω| increases exponentially. 
Hence, Zakaria (2016) and Manshur et al. 
(2020) use a transfer matrix approach to 
expedite the computation.

Let graph Λ ⊂ Γ be a lattice with size M x 
2' such that the sites at the N = 2 do not have 
vertical edges and graph Λ' ⊂ Γ is a lattice with 
a size 1 x 1'. Hence, we can get our desired graph 
Γ that has size M x N' by performing the union of 
graphs ΛN-2 Λ' for N > 1.

We represented the partition function Z in 
matrix form. The entries of a matrix are indexed 
as ij where i is the position of the entry’s row 
and j is the position of the entry’s column. We 

arrange one-to-one xh to the entries of a square 
matrix T. The matrix index ij corresponds to ij 
in σ(i, j). Instead of using ij = 1, 2, ..Z for the 
matrix index, we index the matrix based on the 
configurations of the lattice such that;

and

We can define the transfer matrix as

Transfer matrix for the graph Λ' is called a 
special case transfer matrix as xh are arranged in 
the matrix diagonally, i.e., i = j.

Based on the Chapman-Kolmogorov 
theorem (Papoulis & Pillai, 2011), the 
summation of the product of partition vectors 
for graph  Λ and Λ' can produce the partition 
function of a new combined graph ΛΛ' 
(Zakaria & Manshur, 2019). Hence, we can 
get the partition function  ZΓ by performing the 
multiplication of the transfer matrix multiple 
times, i.e.,   for N > 1.

Monte Carlo Simulation
We employed the Metropolis algorithm (Kotze, 
2008) further to investigate the existence of 
the phase transition critical point. It involves 
iteratively updating the system’s configuration 

(6)
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(6)

by randomly flipping a site to a randomly chosen 
state and accepting or rejecting these changes 
based on a Metropolis acceptance criterion. The 
new configuration is accepted if it has higher 
magnetisation than the old configuration. If it 
has lower magnetisation, it will be accepted if a 
randomly generated real number that ranges from 
0 to 1 is lower than the Boltzmann factor  eβ∆M 
where β is the inverse temperature and ∆M is the 
magnetisation difference between the new and 
old configuration. The Boltzmann factor ensures 
that the Monte Carlo simulation samples state in 
accordance with their relative probabilities at a 
specified temperature. We used random flipping 
to ensure all possible configurations were 
explored for sufficient iterations. This can help 
to capture critical fluctuation. The probability 
of choosing a new state is equal for all states 
to avoid unbiased sampling. This also represents 
the symmetry of the model.

The system is initialised in the simulation 
by a random configuration to the lattice. The 
simulation is then performed for 10,000 iterations 
for a temperature T to ensure the system reaches 
equilibrium. Then, another 10,000 iterations are 
performed where the equilibrium lattice is now 
assigned as the initial lattice. During sampling 
iterations, the data is calculated for each 
configuration to find the statistical measures 
for each T to get the observables (total energy, 
specific heat, magnetisation, and susceptibility) 
value and graphed over T. Using 10,000 iterations

Table 1: Z5-symmetric models with their respective energy list  and size

χ Lattice Size

(3
,1

,0
)

5 x 5' 6 x 6' 7 x 7' 8 x 8' 9 x 9' 10 x 10' 30 x 30' 50 x 50' 70 x 70' 100 x 100'

(3
,2

,0
)

5 x 5' 6 x 6' 7 x 7' 8 x 8' 9 x 9' 10 x 10' 30 x 30' 50 x 50' 70 x 70' 100 x 100'

(1
,3

,0
)

5 x 5' 6 x 6' 7 x 7' 8 x 8' 9 x 9' 10 x 10' 30 x 30' 50 x 50' 70 x 70' 100 x 100'

(2
,3

,0
)

5 x 5' 6 x 6' 7 x 7' 8 x 8' 9 x 9' 10 x 10' 30 x 30' 50 x 50' 70 x 70' 100 x 100'

(7)
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 for the sampling process can ensure the statistical 
independence of the sampled configurations.

Here, we presented the system using 
increasing lattice sizes and the 100 by 100' 
lattice size as the highest, considering our time, 
computing resources, and minimising the finite 
boundary effect. This simulation was simulated 
using decreasing temperature. By starting from 
a high temperature and gradually reducing it, 
the system has a higher probability of exploring 
different configurations and overcoming energy 
barriers to reach equilibrium. The temperatures 
were defined by a consistent decrement of 0.01 
to ensure the smoothness of the graph. 

For magnetisation, we defined nearest 
neighbour atoms with similar states to have 
the value 1 while nearest neighbour atoms 
with different states give a 0 magnetisation 
value. We then stored the multiplicity of each 
magnetised interaction to imitate the magnetic 
region of the ferromagnetic system. The mean of 
the multiplicities calculated the magnetisation 
value.

Other observables are susceptibility and 
specific heat. Both susceptibility and specific 
heat refer to the reactiveness of the system to 
the external field. However, our system neglects 
the magnetic field and has already reached 
equilibrium with the heat bath. So, we used 
the fluctuation-dissipation theorem to calculate 
both observables. This theorem states a general 
relationship between the response of a given 
system to an external disturbance and the 
internal fluctuation of the system in the absence 
of the disturbance (Kubo, 1966). It relates the 
equilibrium fluctuations of a physical quantity 
to its response function, which describes how 
the system reacts to small changes in an external 
parameter. This theorem is influenced by the 
work of Einstein on Brownian motion (Einstein, 
1905). He derived a relation between the mean 
square displacement of a particle undergoing 
random motion (related to fluctuations) and 
its mobility (related to response) in a fluid. 
This theorem is fundamental to the statistical 
mechanics of nonequilibrium states or of 
irreversible processes in general (Kubo, 1966).

Here, we used the variance of the 
magnetisation and the variance of the total energy 
as the correlation function for susceptibility and 
specific heat, respectively. Hence, we can define 
susceptibility as χs = β[Var(M)] and specific heat 
as Cv = β2[Var(E)] (Kotze, 2008). The variance 
of the observable gives information about the 
dispersion of the configurations of the system at 
a temperature, while the inverse temperature β 
scales the difference with respect to temperature.

The fact that the observables change over 
time hints at the existence of phase transition. 
In addition, sudden changes in the graph can 
indicate the occurrence of phase transition in the 
system. We know that the sudden change may 
also be caused by other factors such as crossover, 
a change in the dominant interactions, or 
multiple competing phases. Thus, we compared 
the observed sudden change with the observation 
of the zeros of the partition function.

Results and Discussion
Zeros of Partition Function
In this section, we present the graph of the zeros 
of the partition function in the complex-Argand 
plane for all considered cases. We analysed 
the locus of the zeros based on their thickness, 
indication of approaching the real axis, the 
distance from the real axis, and the possibility 
of merging or branching out. The real axis (–∞, 
0)-region is not physical as the temperature  is 
negative. The ferromagnetic material which has 
interaction energy J > 0 can be studied over the 
real axis (1, ∞)-region. The (–∞, 0)-region and 
(0, 1)-region are not physical as the zeros x = 
eBJ and the temperature T are both negative. 
Note that the (0, 1)-region represents the 
antiferromagnetic material when interaction 
energy J < 0. Here, we focused on the (1, ∞) 
-region for the study of ferromagnetism.

We analysed the zeros distribution of 
the partition function based on the Lee-Yang 
theorem. Lee and Yang (1952) showed that 
the equation of states of phase transition is 
closely related to the root distribution of the 
partition function. Lee-Yang’s theorem states 
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Figure 2: Zeros distribution of Z(3,1,0) for lattice size (a) from 5 × 5' to 9 × 9' and (b) 8 × 8'
(a) (b)

that the roots always lie on a circle under certain 
conditions. Hence, we examined the locus of 
zeros, which indicates they will cut the real axis. 
The point where the loci cut the real axis can 
give us a temperature value that is considered 
a critical temperature Tc. Thus, the system 
undergoes a phase transition at that temperature. 
Figures 2 through 5 present the distribution of 
the zeros for the partition function of  χ = (3, 1, 0), 
(3, 2, 0), (1, 3, 0), (2, 3, 0).

Refer to Figure 2. The zeros distribution 
of the partition function Z(3, 1, 0) formed a visible 
arc near the positive real axis. As lattice size 
increases [Figure 2 (a)], the zeros become dense 
and move closer to the real axis. The change of 
the end points closest to the positive real axis 
specifically in the (1, ∞) range indicates that the 
increase in size gives better observation and as 
the lattice size increases to the thermodynamic 
limit, this closest point is expected to reach the 
real line axis. The locus from the zeros will be 
smooth and cut the real axis at the phase transition 
critical point. This case has been reproduced 
based on the work by Zakaria (2016), which 
shows that it has only one (1) curve, which 
indicates a single-phase transition temperature. 
Figure 2 (b) presents the distribution of the 
zeros for the largest even cases that have been 
considered in this paper. The even case has a 

smooth arch compared to the odd cases, as it 
is less affected by the small lattice size and the 
choice of boundary condition.

Figure 3 presents the zeros distribution 
of the partition function for Z(3,2,0). This 
figure suggests that multiple loci of zeros 
may approach the real axis as the lattice size 
increases. Some loci close to each other may 
converge to form a dense single arc as they grow 
to the thermodynamic limit. The zeros that form 
another curve far from the dense one may be 
smooth out as the size increases. Nevertheless, 
they are still far from the real axis. Again, the 
even case has a smooth arch compared to the 
odd cases, as it is less affected by the small 
lattice size and the choice of boundary condition.

The zeros distribution of the partition 
function for Z(1,3,0) is shown in Figure 4. Similar 
to the previous cases, a clear arc is approaching 
the real axis as the lattice size increases. 
However, there is a visible finite size effect for 
this case where some of the zeros for the even  
N case are smoother than the odd N case. The 
even N case indicates the existence of a single 
locus of zeros or single-phase transition. Some 
zeros in the odd N case have values outside of 
the dense locus (outliers), which suggests this 
finite size effect.
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From Figure 5, the zeros of the partition 
function for Z(2,3,0) hints at two arcs approaching 
the real axis even though they are far from the 
real axis. Those arcs are more visible for even 
N. One arc is dense but far from the real axis, 
while the other arc is thin and dissipates as it 
approaches zeros. They may converge as N 
increases. The closest zero to the real axis for  
Z(3,1,0) and Z(3,2,0) is the zero from lattice 9 by  
9' while for Z(1,3,0)  and  Z(2,3,0) is the zero from 
lattice 8 by 8'.

In general, the zeros of the partition function 
for each model show a similar pattern with 
increasing zeros as the lattice size increases. 
As lattice size increases, the arcs approaching 
the real axis will form a line that intersects 
the real axis at the thermodynamic limit. The 
intersection is the critical point for the model. In 
some cases, the emergence of additional loci for 
odd M is due to the boundary conditions. Even 
the closest zeros to the real axis of the loci of 
interest for some models are at even lattice size 

Figure 3: Zeros distribution of Z(3,2,0) for lattice size (a) from 5 × 5' to 9 × 9' and (b) 8 × 8'
(a) (b)

Figure 4: Zeros distribution of Z(1,3,0) for lattice size (a) from 5 × 5' to 9 × 9' and (b) 8 × 8'
(a) (b)
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M. However, the boundary effect will vanish 
at the thermodynamic limit as the ratio of the 
boundary vertices over inner vertices approaches 
zero as the lattice size increases.

Observables
The MCM simulation sampled the observables,  
0 of the model in the range [0.5, 2.5]. This range 
was chosen based on the observation from 
the zeros of the partition functions. For each 
model, we graphed the total energy h per spin, 
specific heat CV, magnetisation Mv per spin, and 
susceptibility χs over decreasing temperature. 
Refer to Figures 6 through 9.

Figure 6 shows the observables for the 
model (3, 1, 0). Both magnetisation per spin 
and energy h per spin increase logarithmically 
as temperature decreases. As the lattice size 
increases, both observables become more 
stable and less steep. The graph for specific 
heat and susceptibility is also more prominent 
as the lattice size increases. The observables for 
models (3, 2, 0) and (2, 3, 0) also show similar 
behaviour to the model (3, 1, 0). This can be seen 
in Figure 7 and Figure 8, respectively. However, 
the observable for the model  (1, 3, 0) as shown 
in Figure 9 demonstrates different behaviours. 

The energy  per spin for this model decreases as 
the temperature decreases.

Overall, the magnetisation per spin graph 
for all cases we studied showed a similar pattern, 
as shown in Figure 10. Here, we can construe 
that our MCM simulation results are valid as 
they were consistent, although they were run 
separately. However, the susceptibility graphs 
across models were incoherent. This will be 
investigated further for future research.

The number of edges for the square lattice 
with open horizontal bc and periodic vertical 
bc is given by N(2M – 1). As the temperature 
decreases, the total energy  should be 
approaching N(2M – 1) × χ[0]. The model (3, 1, 
0) and  (3, 2, 0) both have the highest energy for 
χ[0]. Hence, the total energy  should increase, 
approaching 19,900 × 3 = 59,700 considering 
the M, N = 100. The highest total energy h for 
the model (2, 3, 0)  and the model (1, 3, 0) are  
39,800 and 19,900 respectively. These models 
first energy list χ[0] is lower than χ[1] and higher 
than χ[2]. Thus, the total energy h may increase 
or decrease as temperature decreases. From the 
result (Figure 8 and Figure 9), the total energy 
h of the model (2, 3, 0) increases while the total 
energy h of the model (1, 3, 0)  decrease as the 
temperature decreases.

Figure 5: Zeros distribution of Z(2,3,0) for lattice size (a) from 5 × 5' to 9 × 9' and (b) 8 × 8'
(a) (b)
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Figure 7: Graphs of observables 〈O〉(3,2,0)  over temperature T for lattice size 10 × 10', 30 × 30', 50 × 50', 
70 × 70' and 100 × 100'

Figure 6: Graphs of observables 〈O〉(3,1,0)  over temperature T for lattice size 10 × 10', 30 × 30', 50 × 50', 
70 × 70' and 100 × 100'
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Figure 8: Graphs of observables 〈O〉(2,3,0)  over temperature T for lattice size 10 × 10', 30 × 30', 50 × 50', 
70 × 70' and 100 × 100'

Figure 9: Graphs of observables 〈O〉(1,3,0)  over temperature T for lattice size 10 × 10', 30 × 30', 50 × 50', 
70 × 70' and 100 × 100'
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Phase Transition(s) and Energy Level
Based on the observation from both the 
behaviour of the zeros of the partition function 
and observables from MCM simulation, it 
is suggested that the existence of the phase 
transition is visible in some cases. Other than this, 
Zakaria (2016) has proposed that the relations 
to their energy step could describe the existence 
of the phase transition(s) across models. Table 2 
summarises the properties of each model and the 
observation of the phase transition(s) based on 
the zeros of partition functions and the graphs of 
the observables for each model.

In general, the result for every case suggests 
the existence of a phase transition. However, 
more evidence is necessary to deduce they 
have multiple phase transitions. Based on the 
observation from the zeros of partition function  Z 

for the cases we studied, plus the instances of Z5-
symmetric model studied by Zakaria (2016), we 
can infer that the model with decreasing energy 
step is more stable and has a phase transition. 
In contrast, the model with increasing energy 
steps shows the possibility of multiple phase 
transitions, although they are prone to experience 
the finite size effect. Including the observation 
from the antiferromagnetic region can provide 
more information about the relationship between 
the energy step and the existence of the phase 
transition across model cases.

Another interesting observation is the 
summation of the subtraction of the energy list 
element. Here, we focused on the difference 
between χ[0] with other χ[i] as we study the 
ferromagnetic material. From Table 2, only the  

Figure 10: Graphs of magnetisation 〈Mv〉 and susceptibility 〈χs〉 over temperature T for χ = (3, 1, 0), (3, 2, 0), 
(1, 3, 0), and (2, 3, 0)

Table 2: Properties and observation of phase transition(s) Z5-symmetric models with χ = (3, 1, 0), (3, 2, 0), (1, 
3, 0), and (2, 3, 0) 

Properties (3, 1, 0) (3, 2, 0) (1, 3, 0) (2, 3, 0)

Energy step (2, 1) (1, 2) (2, 3) (1, 3)

5 4 -1 1

Observed Range(s) of the critical 
point, T

(1.77, 2.26 ) (1.72, 2.16) (1.83, 2.37) (1.44, 2.47)

- (1.96, 2.63) - -

Number of critical points, T 1 2 1 1
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(1, 3, 0) case has negative summation and has 
decreasing total energy h. We could not estimate 
the range of the critical temperature Tc solely 
from the specific heat and susceptibility graphs 
as they were affected by a lot of noise. However, 
we can pinpoint the critical temperature Tc of the 
model based on the peak in the ranges that are 
obtained from the observation of the zeros. The 
estimation is shown in Table 2.

The specific heat graphs for all cases 
showed a more distinct peak for temperatures 
under 1. The peaks become sharper as the 
value of β increases rapidly. Hence, it is hard 
to determine the existence of phase transition at 
low temperatures. Nonetheless, further analysis 
using critical exponent values and scaling 
laws can give valuable information to estimate 
the critical temperature Tc. For this study, we 
depicted the system in the ferromagnetic and 
paramagnetic phases. A better definition of 
magnetisation that can capture other magnetic 
phases for the MCM simulation may give more 
evidence to the multiple-phase transitions.

Conclusions
We have studied the partition function and their 
zeros Z5-symmetric models on the square lattice. 
The zeros are plotted in a complex Argand 
plane to study the analytical structure of the 
zeros distributions. Our research supports some 
relations regarding the comparison between the 
cases of ZQ-symmetric model. We also provide 
another tool to study the ZQ-symmetric model. 
Finding the range of the graphs’ singularity is 
only the first step to support the claim that this 
structure suggests the behaviour of physical 
observables at thermodynamic limits related to 
phase transition. Further analysis of the results 
will give more insights. For the moment, although 
it is very interesting to extend the distribution of 
the zeros further to larger cases to predict the 
exact locus of zeros, the computing resources at 
hand are limiting our study. The implementation 
of parallel computing and cloud computing are 
the options for improvement. The study of cases 
with  χ[0] = 0 should be considered for future 

work to provide more insight into this model. 
Overall, the study of this more generalised model 
is vital to mimic the system in the real world 
as closely as possible to help the experimental 
works in a more sustainable approach. 
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