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Introduction 
Water is a vital human need. It could be a source of 
food insecurity that would lead to conflicts such as 
increased competition over resources, reduction 
in agricultural production, high food prices, and 
food/water shortage. Providing sufficient water 
demand to the public is an important matter to 
be considered. This aim is tallied with global 
goals and SDGs to ensure the availability and 
sustainable management of water and sanitation 
for everyone. The success of SDG6 requires 
sustainable management of water resources 
and access to safe water, which is critical to the 
survival of people and the planet. Malaysia is 
rich in water resources. However, an increase 
in the population, expansion in urbanisation, 
and rapid socioeconomic development impose 
high pressure on water resources. Therefore, 
Malaysia’s water supply has changed from 
relative abundance to relative scarcity (Payus 
et al., 2020). Malaysia’s growing demand for 
water is to sustain its growing population and 

industrialisation. The term ‘demand’ refers to 
the volume that is desired. An accurate water 
demand estimation helps determine the water 
quantities to be used. Water demand is divided 
into domestic and non-domestic (Anang et al., 
2019). Domestic water demand refers to water 
allocation from water agencies for household 
purposes or residential uses such as drinking and 
washing clothes. Non-domestic demand refers 
to industrial, commercial, institutional, and 
public water allocation such as shops, schools, 
and hospitals. Due to the current phenomenon of 
high progress in industrial and economic activity 
and population growth in Malaysia, water 
demand has been increasing, especially in the 
urbanised states. The unforeseen contamination 
in water resources such as rivers, lakes, and 
aquifers and the impact of climate change alter 
the availability, quantity, and quality of water 
supply. As a result, Malaysians suffered from 
frequent interruptions to the clean water supply. 

Abstract: Water crises are often experienced by many developing countries worldwide. 
Predicting future domestic water demand and identifying the influential factors are vital to 
managing water supply effectively. This study aims to determine the best predictive models 
among Multiple Linear Regression (MLR), Multi-layer Perceptron (MLP), and Radial 
Basis Function (RBF) Neural Networks as well as to identify the significant influential 
factors towards domestic water demand. Based on the yearly records from 2000 to 2018 
obtained from the Malaysian Water Association, the Department of Environment, and the 
Department of Statistics Malaysia the analysis results indicate an increasing pattern of 
domestic water in Malaysia with the demand for non-domestic water twice lower than 
domestic water. Based on RMSE and R-squared, Multi-layer Perceptron is the best model 
for predicting domestic water demand. The MLR model shows that the two most significant 
influential factors towards domestic water demand are price and design capacity, with 
negative and positive relationships. The results describe that an increase in price affects 
a decrease in water demand, while an increase in design capacity will reduce the water 
demand. The findings suggest that the water utilities in Malaysia should focus more on 
these identified factors.
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The most recent incident reported in December 
2020 was the water disruption due to pollution 
in the water resources. Livestock Farming and 
agriculture are some of the leading causes of 
water pollution due to chemical dumping from 
farming and livestock operations.

For example, in coping with water crises 
in Iran, a group of researchers Mikaiil et al. 
(2023) recommended basic studies are very 
important in planning water supply for urban 
populations. Choudhary and Mushtaq (2023) 
suggest reusing and recycling wastewater as a 
practical solution. An example of the successful 
experience of several countries is how China can 
handle the country’s water scarcity by tackling 
sustainable agricultural water management 
and “sponge city initiatives” (Qi et al., 2020). 
Kenya implemented “agroforestry”. For Chile, 
by way of better governance, committing to 
net-zero infrastructure, and implementing a 
new constitution able to solve the problem. An 
example of an infrastructure-based solution to 
water scarcity is the “smart-water management 
system” utilised in South Korea, an innovative 
system that helps improve water management’s 
reliability, soundness, and efficiency (Kim 
& Kang, 2020). Despite the crisis, the water 
authorities in Malaysia continue to adopt an 
approach to supply management (Chan, 2004), 
where water resource management is the main 
focus. Yet, many areas still need improvement to 
achieve better governance in water management, 
including reducing leakage, waste, ineffective 
privatisation, and demand management for water 
for both domestic and non-domestic consumers. 
Several surveys have also been conducted on 
the demand issues for improvement purposes 
for Malaysians. Research by Nur Syuhada 
et al. (2020) aimed to ascertain consumers’ 
willingness to pay based on customers’ 
preferences for water quality, water pressure, 
and reduction of water service disruptions 
using a series of stated choice experiments with 
Conditional Logit (CL) model and Mixed Logit 
(ML) models. The findings contributed to a new 
viewpoint of the water provider. Earlier research 
by Yaacob et al. (2011) showed that the sample 
respondents are willing to pay more for drinking 

water provided that water quality, frequency of 
water interruption, and trust in tap water have 
been improved.

Predictive modelling is a promising 
approach to predicting domestic water demand 
as it uses data mining and probability to forecast 
or estimate more granular (specific outcomes) 
with the ability to know the significant 
contribution of some factors. From a statistical 
point of view, studies on predicting domestic 
water demand in Malaysia using predictive 
modelling are still limited. In common practice, 
the Multiple Linear Regression (MLR) model is 
the most popular parametric form of regression 
analysis and is widely used for prediction. It has 
a predetermined structure, so the residuals must 
be normally distributed. Anang et al. (2019) 
have also reported that MLR is one of the 
predictive models that can be used in the water 
industry. Besides that, previous studies that used 
machine learning techniques such as Artificial 
Neural Networks with Multi-layer Perceptron 
(MLP) function in predicting domestic water 
demand in Malaysia were limited, and the results 
outperformed the statistical methods. A similar 
study by Hassan (2013) in Malaysia indicated 
that Artificial Neural Networks with MLP 
produced more reasonable results than MLR. 
In addition, the application of Artificial Neural 
Network with Radial Basis Function (RBF) is 
lacking, particularly for the Malaysia dataset 
for water demand prediction. Lee and Derrible 
(2019) confirmed that Artificial Neural Network 
models are designed to capture nonlinear and 
complex relationships between variables using 
stochastic local optimisation. Thus, it tends to 
decrease biases during estimation and provide 
more accurate predictions than linear models. 
Furthermore, studies to identify the contributing 
factors towards water demand in Malaysia are 
still scarce. 

A detailed understanding of water usage 
patterns and the factors that affect water use is 
essential for the proper management of water 
supply and the implementation of relevant 
public policies. Water use patterns are extremely 
complicated processes that depend on a variety 
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of influential elements, such as seasonal 
variability and water availability (Machingambi 
& Manzungu, 2003; Arouna & Dabert, 2010), 
water supply restrictions (Andey & Kelkar, 
2009), tariff structure and pricing (Renwick & 
Green, 2000), household characteristics (Syme 
& Shao, 2004) and attitudes and intentions 
towards water conservation (Corral-Verdugo et 
al., 2002). These elements directly and indirectly 
influence water consumption and usage patterns 
(Jorgensen et al., 2009).

Several limited studies have considered 
several factors associated with water demand 
in Malaysia. For instance, Anang et al. (2019) 
considered water resources the dependent 
variable while real income, total consumption 
per capita, population density, and climate 
change were the independent variables in their 
study. The findings show that water demand 
is positively impacted by total per capita use, 
agriculture, and population density. The demand 
for water resources from the agricultural sector is 
significant. The rise in demand for water during 
dry spells, which causes water stress, is a correct 
indication of climate change. This discovery 
helps enhance climate change forecasting and 
manage water resources sustainably, especially 
in the agricultural sector. Another previous 
study conducted in Malaysia was conducted 
by Hassan (2013). The analysis based on 247 
records revealed that among the independent 
variables considered in the study, domestic 
water use, water price, per capita GDP and 
averaged annual rainfall; GDP and water price 
were identified to be the most influential factors. 
In summary, factors such as water consumption, 
precipitation, temperature, water price, and 
population are the commonly applied input 
variables in predicting domestic water demand 
in Malaysia (Li & Feng, 2019). Several other 
potential factors such as water treatment plant 
capacity, water production, water quality, gross 
domestic product, and other meteorological 
variables such as relative humidity, evaporation 
and wind speed may significantly influence 
water demand and the variation. However, the 
involvement of these variables in modelling 

Malaysia’s water demand is seen as lacking. 
Thus, this situation allows this study to fill the 
gap.

This research aims to investigate the 
important factors of Malaysian water demand 
based on a comparative study of MLR, MLP, 
and RBF Network predictive models. Given the 
significant factors, the identified best model is 
proposed for use in predicting water demand. 
This study implements a comparative analysis to 
determine the best predictive model among the 
three considered models. The results would also 
serve the purpose of more effectively choosing 
the water consumption forecasting mode 
parameters for regional water consumption 
analysis and water resource planning and 
management.

Materials and Methods
Data and Sources
The data gathered in the yearly record from 
the year 2000 to 2018 of 14 states in Malaysia 
including the Federal Territory of Kuala Lumpur, 
Federal Territory of Labuan, Federal Territory 
of Putrajaya, Johor, Kedah, Kelantan, Malacca, 
Negeri Sembilan, Pahang, Perak, Perlis, Penang, 
Sabah, Sarawak, Selangor, and Terengganu over 
19 years period has contributed to 266 of the total 
observations. Various sources were involved in 
acquiring the data, such as the Malaysian Water 
Association, the Department of Environment, 
and the Department of Statistics.

Study Variables
For this study, other than some selected factors 
from previous studies, due to data availability, 
several new factors were considered to be 
modelled, including water quality index, 
temperature, relative humidity, evaporation 
and wind speed. The factors were grouped into 
three major components: Water, economics, 
and meteorology. The variables included in this 
study are shown in Figure 1, which consists of 
13 independent variables and one dependent 
variable. The description of the variables is as 
follows.
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Conceptual Framework
The conceptual framework of the relationship 
between 13 independent variables was divided 
into three categories: Water factors, economic 
factors, meteorological factors, and one 
dependent variable (Domestic water demand) as 
shown in Figure 1.

Methodology Framework
This study obtained data from the agencies 
(MWA, DOSM, DOE, DID, MET), followed 
by the next step, data pre-processing. The pre-
processing stage included data quality checking, 
transformation, and normalisation. Next, data 
visualisation was used to fulfil the first objective: 
To identify the pattern of domestic water 
demand in Malaysia. The model establishment 
of Multiple Linear Regression and Artificial 
Neural Network was the step taken to fulfil the 
next objectives, followed by model training and 
validation. The model performance evaluation 

used performance indicators such as the root 
mean square error (RMSE) and coefficient 
of determination (R-squared) to compare and 
identify the best model approach. Finally, 
the significant factors influencing Malaysia’s 
domestic water demand were identified. The 
framework of the study is illustrated in the 
flowchart  in Figure 2.

Data Analysis and Method
The study used two statistical software, namely 
R programming and Statistical Package for 
the Social Sciences (SPSS). Microsoft Power 
BI is used for data visualisation since it is the 
most popular tool to develop a dashboard. 
The R programming was applied for data 
cleaning, descriptive statistics, and Multiple 
Linear Regression. The SPSS software was 
used to model Multi-layer Perceptron Neural 
Networks and Radial Basis Function Networks. 

Table 1: Data description

Sources Variables Unit

Malaysian Water Association

Population served Number of people (N)

Water treatment plant design 
capacity Millions of litres per day (MLD)

Water production Millions of litres per day (MLD)

Domestic water Millions of litres per day (MLD)

Non-domestic water Millions of litres per day (MLD)

Non-revenue water Millions of litres per day (MLD)

Water pricing Ringgit Malaysia per cubic meter 
(RM/m3)

Department of Environment Water quality index Index

Department of Statistics Gross domestic product per capita Ringgit Malaysia (RM)

Department of Irrigation and 
Drainage Rainfall Millimetres (mm)

Meteorological Department

Temperature Celsius (ºC)

Relative humidity Percentage (%)

Evaporation Millimetres (mm)

Wind speed Kilometre per hour (km/h)
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Figure 1: Conceptual framework for predicting domestic water demand

Figure 2: Research methodological framework
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The secondary data that had been gathered was 
analysed using the appropriate data analyses 
that aligned with the objectives. Generally, three 
main steps had to be implemented to achieve the 
goals: Data visualisation, model building, and 
model comparison. In the modelling stage, the 
data set is divided into 70% training and 30% 
testing. The training data set is used to develop 
the models and the testing data set is used to 
validate the models.

(a) Multiple Linear Regression Model (MLR)
Multiple Linear Regression attempts to 
model the relationship between two or more 
explanatory variables and a response variable 
by fitting a linear equation to observed data. 
Multiple Linear Regression refers to a statistical 
technique that is used to predict the outcome 
of a variable based on the value of two or 
more variables. The predicted variable is the 
dependent variable, while the variables used to 
predict the dependent variable are independent 
or explanatory (Kutner et al., 2004). However, 
the study used time-series recorded data, hence 
before the Multiple Linear Regression model was 
developed, the data needed to be randomised. 
This step removes the autocorrelation effect on 
model parameter estimation (Montgomery et 
al., 2012).

The mathematical equation of the model is 
as follows:

Y = β0 + β1Xi1 + β2Xi2 + ... + βk Xik + ε (1)

where Y is the dependent or predicted variable,  
β0 is the y-intercept (i.e., the constant term), 
β1, β2, βk are the regression coefficient for each 
explanatory variable, Xi are the explanatory 
variables and ε is the model’s random error 
term. The error terms are assumed to follow a 
normal distribution with mean zero and constant 
variance. The MLR’s important assumptions 
include: There is a linear relationship between 
the dependent and independent variables, the 
independent variables are not highly correlated 
with each other (i.e., no multicollinearity) and 
no outliers and highly influential points in the 
data.

(b) Multi-layer Perceptron Neural Network
Among the neural networks model, the Multi-
layer Perceptron Neural Network is the most 
popular. This model uses a back propagation 
(BP) training algorithm. The number of layers 
and neurons in each hidden layer is optimised by 
trial-and-error procedure even though the user 
has determined the number of neurons in the 
input and output layers. The activation function 
[f(NET)] used in the study is the Hyperbolic 
Tangent function, where it takes real-valued 
arguments and transforms them to the range 
(–1, 1). The most commonly used weight 
optimisation method is the back-propagation 
algorithm, which iteratively analyses the errors 
and optimises each weight value based on the 
errors generated by the next layer (Li et al., 
2017). The mathematical equation of the model 
is as follows:

(2)

       f(NET) = tanh (NET)  (3)

where wij represents the weight value of  a 
connection, xi represents an inputted independent 
variable and b represents a bias.

(c) Radial Basis Function Network
The Radial Basis Function transforms the input 
signal into another form, which can feed into the 
network for linear separability (Chandradevan, 
2017). It may require more neurons than a 
multi-layer perceptron. In addition, the Radial 
Basis Function is strictly limited to have exactly 
one hidden layer, namely a feature vector. One 
hidden layer has been proven to approximate 
any function, and it is also known as a universal 
approximator (Liu, 2013). Although structurally 
less complicated than Multi-layer Perceptron, 
it can achieve better function approximation 
with only one hidden layer (Markopoulos et 
al., 2016). The basic structure of a Radial Basis 
Function includes an n dimension input layer, a 
larger dimension m hidden layer (m > n) and the 
output layer. 



Natrah Jefri and Norshahida Shaadan   42

Journal of Sustainability Science and Management Volume 19 Number 6, June 2024: 36-53

Radial Basis Function activates neurons 
at the hidden layer. The typical Radial Basis 
Function uses Gaussian and Logistic functions, 
where the input units distribute the values to the 
hidden layer units uniformly without multiplying 
them with weights. Each hidden node contains 
a centre c vector that is a parameter vector of 
the same dimension as the input vector x; the 
Euclidean distance between the centre cj(t) 
and the network input vector x is defined by 

.

The study used the Gaussian function which 
the sensitivity can be tuned by adjusting the 
spread or variance (δ). A larger spread implies 
less sensitivity (Chandradevan, 2017).

The mathematical equation of the model is 
as follows:

where; wij represents the weight value of a 
connection,    φj(x)    represents    the    activation 

function and  is the spread parameter 

or the square root of variance  .

Performance Indicator
The prediction performance of the Multiple 
Linear Regression and Artificial Neural 
Network models are evaluated using root mean 
square error (RMSE) and the coefficients of 
determination (R-squared) is used. The models 
that provided the best prediction values were 
chosen as the best prediction models.

(a) Root Mean Squared Error (RMSE) 
Root Mean Squared Error (RMSE) is the square 
root of the mean of the square of all of the 
errors. RMSE is very common and is considered 
an excellent general-purpose error metric for 
numerical predictions. The deviation between 

actual and predicted domestic water demand 
values:

where n is the number of data points, yi are the 
observed values and ŷi are the predicted values. 
Using RMSE, the lower the value the better the 
performance of the estimated model.

(b) Coefficients of Determination (R-squared)
The coefficient of determination (R-squared) is 
calculated to see how close the predicted values 
are to the true (observed) value. Statistically, 
R-squared indicates how much variation in 
the dependent variable (i.e., water demand) 
is explained by the independent variables. 
Other than the error measure (RMSE), in 
the predictive modelling methodology, this 
indicator is important as a measure to assess 
the capability of a predictive model, regardless 
of whether the model is from the linear or non-
linear. Using R-square, the higher the value, the 
better the performance is the estimated model. 
R-squared has been popularly used to compare 
several predictive models’ performance (Lee 
& Derrible, 2020; Shuang & Zhao, 2021) in 
predicting water demand. Model with a high 
R-square (> 0.8) shows a good capability to be 
used for prediction (Mahmud et al., 2023).

The mathematical equation of R-squared 
value:

where n is the number of observations, yi are the 
observed values, ŷi are the predicted values and  
are the average values.

Results and Discussion
Descriptive Statistics
Based on Table 2, the dependent variable, which 
was domestic water demand, had the minimum 
and maximum values of 12.54 and 824.25, 
respectively. While non-domestic water demand 

(4)

(6)

(7)

(5)
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had a minimum and maximum value of twice 
as low as domestic water demand. The average 
water production was approximately 741 
million litres per day (MLD), indicating that the 
water was sufficient for Malaysians. However, 
the average unbilled or lost water was higher 
(276.42 MLD) compared to non-domestic 
used (159.95 MLD). The average rainfall in 
Malaysia was about 2,300 mm with an average 
evaporation of 4 mm and an average temperature 
of 27ºC. It should be noted that all variables 
were approximately normally distributed as the 
skewness values were within the range of ±2 
standard deviation, even though the variables of 
relative humidity, temperature, and wind speed 
were recorded negatively.

This study used a line chart to visualise the 
pattern of the three main water types: Domestic 
water demand, non-domestic water demand, and 
non-revenue water in Malaysia over 19 years. 

Figure 3 depicts domestic water having 
the highest demand compared to non-domestic 

Table 2: Descriptive statistics

Variables
Statistics

Min Max Mean Median Skewness
Population served (N) 76,100.00 3,741,901.00 1,536,436.00 1,506,211.00 0.32

Design capacity 
(MLD) 57.43 2,109.45 917.85 929.00 0.05

Water production 
(MLD) 32.14 1,839.60 740.66 755.50 0.04

Non-revenue water 
(MLD) 6.61 712.95 276.42 265.80 0.34

Price (RM/m3) 0.52 0.91 0.68 0.67 0.59
Gross domestic 
product (RM) 2,146.00 286,297.00 31,678.63 265.80 0.31

Rainfall (mm) 1,299.60 3,358.80 2,256.17 2,285.4 0.13
Evaporation (mm) 3.10 5.20 4.13 4.10 0.04

Relative humidity (%) 75.10 87.50 81.73 81.50 –0.02
Temperature (ºC) 25.70 28.50 27.28 27.30 –0.29

Wind speed (km/h) 1.00 2.70 1.81 1.90 –0.46
Non-domestic water 

(MLD) 7.37 406.35 159.95 167.50 0.14

Domestic water 
(MLD) 12.54 824.25 299.67 281.50 0.50

water over 19 years. This indicates that the 
demand for household use was greater than that 
of the consumers of the agricultural, industrial, 
and institutional sectors. However, the water 
loss in Malaysia due to several issues, such as 
pipe leakages, was greater, as the line plot of 
non-revenue water (NRW) was higher than non-
domestic water. Overall, the three main types of 
water revealed an increasing pattern over time. 
The study used a horizontal bar chart to display 
the proportions of the three main types of water 
(domestic, non-domestic, and non-revenue).

Referring to Figure 4 above, domestic 
and non-domestic demand proportions were 
approximately 40% and 23%, respectively. 
It was almost a 20% difference between both 
demands. However, a mere 3% difference 
between domestic and non-revenue water 
(NRW) indicated that the unbilled water or water 
loss in Malaysia was high and almost similar to 
the domestic water demand.
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Results of the MLR Model 
Several prior analyses have been conducted 
to ensure the MLR assumptions are met. The 
dependent variable, domestic water has skewed 
distribution, indicating the data are not normally 
distributed, thus the dependent variable requires 
log transformation. The result of correlation 
analysis describes the relationship between the 
independent and dependent variables.

Based on Table 3, at a 5% significance level, 
as shown by p-value < 0.05, all independent 

Figure 3: The pattern of the water demands and loss in Malaysia

Figure 4: The proportion of water demands and loss in Malaysia

variables have a significant relationship with 
water demand except rainfall, temperature 
and relative humidity. As demonstrated by 
the high correlation coefficient (r > 0.75), the 
important variables with a strong positive 
linear relationship with domestic water demand 
are population served, design capacity, water 
production and non-domestic water. Meanwhile, 
non-revenue water and gross domestic product 
have a moderate relationship (0.5 < r < 0.75). 
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Additionally, water price, rainfall, evaporation 
and wind speed had a weak relationship (r < 0.5) 
towards log domestic water demand. A negative 
sign shows an indirect relationship, while a 
positive sign indicates a direct relationship.

Although scatter plots and correlation 
matrices can also detect multicollinearity, their 
results only reveal the bivariate relationship 
between the independent variables and are 
just an indication of insights; meanwhile, VIF 
is the most common and confirmed method. 

The method can demonstrate the relationship 
between a variable and several other variables. 
Referring to Montgomery et al. (2012), 
multicollinearity checking was conducted using 
the Variance Inflation Factor (VIF) for this 
study. Based on the VIF value in Table 4, the 
multicollinearity problem existed since the two 
variables, water production (WP), and design 
capacity (DC), had a VIF value of more than 
10. After removing water production (WP) 
variables, the multicollinearity problem was 

Table 3: Correlation between the dependent (Log Domestic Water Demand) and the independent variables

Independent variables Correlation value (r) P-value
Population served 0.79 < 0.001
Design capacity 0.88 < 0.001

Water production 0.90 < 0.001
Non-domestic water 0.81 < 0.001
Non-revenue water 0.69 < 0.001

Water price –0.17 0.005
Gross domestic product 0.73 < 0.001

Rainfall 0.13 0.033
Temperature –0.12 0.048

Relative humidity 0.02 0.782
Evaporation –0.29 < 0.001
Wind speed 0.16 0.011

Table 4: Table of Variance Inflation Factor (VIF)

Variables VIF (All Variables) VIF (Remove Water Production)
Population served 8.11 5.95
Design capacity 15.10 8.34

Water Production 39.27 -
Non-revenue water 6.31 2.84

Price 1.16 1.16
Gross domestic product 5.35 4.92

Rainfall 1.43 1.34
Evaporation 1.85 1.83

Relative humidity 1.95 1.96
Temperature 1.84 1.79
Wind speed 1.32 1.29

Non-domestic water 8.04 5.70
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solved with all VIFs less than 10. Hence, a total 
of 11 independent variables were employed in 
this study. 

MLR model in this study was developed 
using enter method, where all the independent 
variables were entered in a single step. In the 
first trial full model, three variables were 
insignificant: Ggross domestic product (GDP), 
evaporation, and wind speed. Next, the 
development of the final model was obtained 
by excluding the three non-significant variables 
from the model. The result of the final estimated 
model is given in Table 5 as follows.

The equation of the final model is as 
follows:

Log (Domestic water demand)
= 18.65 + (2.833E – 7) (Population served) 

+ (8.883E – 4) (Design capacity) – 1.599 
(Water price) + (6.070E – 4) (Non-revenue 
water) + (1.500E – 3) (Non-domestic) 
– (2.015E – 4) (Rainfall) – (8.010 – 2) 
(Relative humidity) – 2.507 (Temperature)

Based on the p-value (< 0.000), the two most 
significant influential factors of water demand 
are water price and design capacity. Water prices 

have a negative association which indicates an 
indirect relationship, a one-unit increase in price 
will impact a 1.599 (MLD) reduction in water 
demand. Meanwhile, design capacity indicated a 
direct relationship; a one-unit increase in design 
capacity will impact water demand to increase 
by (8.883E – 4) (MLD). 

(a) MLR Model Diagnostic Checking
Results in Table 6 and Figure 5 provide evidence 
of the accuracy and validity of the final model. 

The R-squared adjusted was 0.8577, the 
value is high, showing the strong capability of 
the predictive model. The model was significant 
as the p-value was less than 0.05. It can be 
concluded that all important variables in the 
model explained 86% of the total variation in 
log domestic water demand. 

Figure 5 (a) portrays that most points are 
along a straight line, forming a converged 
pattern at the distribution’s tails. Additionally, 
the residuals independence plot also exhibits 
a random pattern [Figure 5 (b)], as does the 
constant variance plot [Figure 5 (c)]. The 
results conclude that the residual normality and 
independent assumptions of MLR are met. The 

Table 5: Standardised Coefficient estimates of the reduced model

Estimate Standard Error t-value p-value
Intercept 18.65 2.696 6.918 0.000

Population served 2.833e-7 5.953e-8 4.759 0.000
Design capacity 8.883e-4 1.410e-4 6.300 0.000

Water price –1.599 2.380e-1 –6.717 0.000
Non-revenue water 6.070e-4 2.340e-4 2.594 0.010
Non-domestic water 1.500e-3 5.619e-4 2.670 0.008

Rainfall –2.015e-4 6.593e-5 –3.056 0.003
Relative humidity –8.010e-2 1.488e-2 –5.383 0.000

Temperature –0.2507 6.459e-2 –3.881 0.000

Table 6: Summary of the final model obtained

Final Model
R-squared Adjusted R-squared ANOVA Goodness of Fit (p-value)

0.8639 0.8577 0.000
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results provide evidence that the MLR model 
obtained is valid.

Results of Neural Network Models: Multi-layer 
Perceptron and Radial Basis Function 
The total of 264 observations was partitioned 
randomly to 70% for model building and 
30% for model validation. However, the exact 
percentage and the number of observations that 
were partitioned for the training and testing set 
using Multi-layer Perceptron and Radial Basis 
and are shown in Table 7.

The model was validated using 32.6% 
of the testing dataset. In order to validate the 
accuracy of the model obtained, the performance 
indicator of Root Mean Square Error (RMSE) 
was used. The Relative Error (RE) indicates 
the percentage of an incorrect prediction. The 

values of the model performance for both model 
training and testing are tabulated in Table 8.

The prediction error of the training model 
was lower than that of the testing model, with the 
RMSE values of 0.107 and 0.133, respectively. 
Additionally, there was very little difference in 
RE value (0.01) between the training and testing 
models. A smaller error was observed for Multi-
layer Perceptron indicating that it is superior 
to Radial basis Function in the prediction 
performance.

The variables important to the models can 
be accessed using the normalised percentage 
chart, depicted in Figure 6. The percentage 
was obtained from the value of importance. It 
measured how much the predicted value changed 
for different independent variable values.

Table 7: Exact percentage split

Model Type of Dataset Percentage Split Number of Observations

Multi-layer         
Perceptron

Training 67.4 178
Testing 32.6 86

Radial Basis    
Function

Training 71.2 188
Testing 28.8 76

Figure 5: MLR model diagnostic checking
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Table 8: Performance indicators for training and testing models

Model Performance Indicators Training Testing

Multi-layer Perceptron
Root Mean Square Error (RMSE) 0.107 0.133

Relative Error (RE) 0.023 0.033

Radial Basis Function
Root Mean Square Error (RMSE) 0.201 0.168

Relative Error (RE) 0.081 0.040

Multi-layer Perceptron model shows 
that the highest importance value was 0.241, 
which was the population served, followed by 
the design capacity and non-domestic water 
with 0.174 and 0.155, respectively. The least 
important variable in the model was gross 

domestic product (0.009). Meanwhile, the radial 
basis model found that the variables that were 
significant to the model could be accessed using 
the normalised percentage chart. The highest 
importance value was 0.140, which was the non-
revenue water. Followed by population served 

Figure 6: Variables importance of the models

(a) Multi-layer Perceptron

(b)  Radial Basis Function
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and non-domestic water with 0.124 and 0.115, 
respectively. The least important variable in the 
model was rainfall (0.047).

Models Comparison Analysis
The three models’ performances were 
compared to get the best predictive model. The 
performance indicators, such as the root mean 
square (RMSE) and coefficient of determination 
(R-squared), were used to evaluate the accuracy 
and prediction capability. Table 9 summarises 
the performance of the three models, Multiple 
Linear Regression, Multi-layer Perceptron 
Neural Network, and Radial Basis Function 

Network, as well as the listing of identified 
important variables of each model.

Based on the result of the model 
performances obtained, the Multi-layer 
Perceptron Neural Network model was chosen 
as the best predictive model for predicting 
domestic water demand in Malaysia due to the 
lowest RMSE and the highest R-squared value. 
The lowest RMSE value of 0.133 indicated 
that the prediction error was small thus it was 
accurate. The highest R-squared value of 0.974 
produced by Multi-layer Perceptron Neural 
Network model confirmed that the model is 
highly capable of predicting water demand. 

Table 9: Comparison of the models’ performance

No. Modelling Technique
Performance Indicator Important Variables 

(Rank Order-descending)RMSE R-squared
1 Multiple Linear Regression 0.281 0.929 Price

Design Capacity
Population served
Relative Humidity

Temperature
Rainfall

Non-domestic water
Non-revenue water

2 Artificial Neural Network 
with Multi-layer Perceptron

0.133 0.974 Population served
Design capacity
Non-domestic

Price
Relative humidity
Non-revenue water

Temperature
Evaporation
Wind speed

Rainfall
Gross domestic Product

3 Artificial Neural Network 
with Radial Basis Function

0.168 0.940 Non-revenue water
Population served

Non-domestic
Gross domestic Product

Design capacity
Temperature

Price
Wind speed
Evaporation

Relative humidity
Rainfall
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Using the best predictive model obtained, the 
important factors were determined. The most 
important factors for predicting domestic 
water demand in Malaysia were population 
served (100%), design capacity (72%), non-
domestic water (64.1%), price (45.1%), relative 
humidity (35.6%), non-revenue water (34.8%), 
temperature (22.3%), evaporation (14.8%), 
wind speed (12.9%), and rainfall (9.8%). The 
lowest contributing factor was gross domestic 
product (3.5%).

Conclusion
The novelty of the paper is to consider the 
application of Multiple Linear Regression 
(MLR) and Artificial Neural Networks (ANN) 
to highlight the important factors in water needs 
in Malaysia and to determine which one is the 
best as a prediction tool. Several new considered 
factors such as water quality, relative humidity 
and evaporation, were involved in the model. 
The analysis results indicated that the patterns 
of water demand for both domestic and non-
domestic, as well as non-revenue water, has 
increased. The proportion of domestic water was 
almost 40%, and 23% for non-domestic water. 
The remaining percentage (37%) was unbilled 
water or water loss. It is imperative for Malaysia 
better to manage water resources and production 
in the years ahead. 

As mentioned, predictive modelling using 
Multiple Linear Regression (MLR) and Artificial 
Neural Networks (ANN) were employed in this 
study to achieve the best prediction model and 
to identify the significant contributing factors. 
MLR modelling began with several assumptions 
to be met. The final fitted model of MLR 
produced eight significant variables: Population 
served, design capacity, water price, non-revenue 
water, non-domestic water, rainfall, relative 
humidity and temperature. However, modelling 
using a Multi-layer Perceptron (MLP) Neural 
Network and Radial Basis Function (RBF) 
Network outperformed the MLR model. The 
adoption of complex algorithms, specifically in 
the activation function, revealed that the model 

could predict better. The MLP model had the 
smallest prediction error (0.133) compared to the 
RBF Network (0.168). Similarly, the precision 
of the MLP model surpassed the RBF Network 
with the R-squared value of 0.974 and 0.940, 
respectively. The application of the MLP Neural 
Network in predicting domestic water demand 
seemed to fit the Malaysia dataset. This chosen 
technique was further confirmed by a previous 
study by Hassan (2013) that employed the MLP 
Neural Network model to predict domestic water 
demand in Malaysia using fewer variables. The 
model described the importance of the factors 
in relation to water demand. However, evidence 
based on the MLR model, water price is the 
most significant influential factor. The finding is 
supported by the study of Anang et al. (2019). 
As the population has increased over the years, 
the water treatment plant design capacity has 
also increased. Therefore, this variable was the 
second-highest contributing factor to the model. 
The research findings can assist decision-makers 
in strategic decision-making regarding water 
management.

Future researchers should use data monthly 
to ensure an adequate number of observations. 
When the number of observations is larger, it 
is easier for the error to be minimised due to 
possible less bias in the parameter estimation 
process. Furthermore, the researcher can include 
other advanced machine learning techniques, 
such as General Regression Neural Network 
(GRNN) and Support Vector Regression (SVR), 
for comparison. It is suggested that the water 
quality index (WQI) not be removed from 
the analysis as this variable might contribute 
more to the model. The best predictive model 
obtained in this study is recommended to be 
employed by responsible bodies in assisting 
the water management for the country as well 
as ensuring sustainability to meet Goal 6 of the 
United Nations Sustainable Development Goals 
(SDGs) 2030 target, which is to provide access 
to clean water and sanitation for all. Better 
management of this natural resource can prevent 
many disasters, including droughts and floods.
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