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Introduction 
Rapid industrialisation and urbanisation have 
significantly influenced global land use and land 
cover (LULC) patterns, profoundly impacting 
water bodies’ ecological and chemical 
characteristics (Ganaie et al., 2021). Water 
turbidity, a critical indicator of water quality, is 
affected by such changes, as turbidity levels are 
often elevated by increased runoff from altered 
landscapes (Zhang et al., 2022). 

The relationship between land use changes 
and water quality parameters such as turbidity 
has been extensively studied (Kibena et al., 
2014; Hua, 2017; Xiong et al., 2022; Zhang et 
al., 2023; Li & Xia, 2023). These changes often 
lead to increased sedimentation and nutrients in 
water bodies, which can cause significant shifts 
in turbidity and overall water quality (Bhateria 
& Jain, 2016). For instance, deforestation and 

urban development increases surface runoff, 
exacerbating sediment loading in rivers and 
lakes (Wang et al., 2024).

Furthermore, integrating Geographic 
Information Systems (GIS) with remote 
sensing provides a powerful tool for analysing 
the spatial distribution of turbidity and its 
correlation with LULC patterns (Zhang et 
al., 2022). This integrative approach enables 
researchers to perform detailed temporal 
analyses of environmental data, enhancing the 
understanding of ecological dynamics over time 
(Kemarau & Eboy, 2023; Kemarau et al., 2023).

Despite the advancements in remote sensing 
technologies and methodologies, the specific 
impacts of different types of land use on water 
turbidity in the Malaysian context, particularly 
over extended periods, have not been adequately 

THE EFFECT OF LAND USE CHANGE ON WATER TURBIDITY USING 
REMOTE SENSING AND GIS TECHNIQUE

RICKY ANAK KEMARAU1*, OLIVER VALENTINE EBOY2 AND ZAINI SAKAWI1

1Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. 
²Geography Program, Faculty of Social Science and Humanities, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota 
Kinabalu, Sabah, Malaysia.

*Corresponding author: rickykemarau@ukm.edu.my                        http://doi.org/10.46754/jssm.2024.08.001
Received: 18 April 2023 Accepted: 13 May 2024 Published: 15 August 2024

Abstract: In the context of escalating freshwater pollution and diminishing rainwater 
collection areas, this investigation utilises remote sensing and GIS to examine the impact of 
land use and cover (LULC) transformations on water turbidity at Kelalong Dam, Bintulu, 
Sarawak. Using Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager 
(OLI) plus Thermal Infrared Sensor (TIRS) imagery collected during the lower-rainfall 
southwest monsoon season (April to September) of 2007 and 2021, the study explores 
the relationship between LULC shifts and turbidity. The study aims to address the gap in 
research evaluating the long-term effects of land use on water turbidity, particularly within 
the Malaysian context. Through the Normalised Difference Turbidity Index (NDTI) and 
meticulous LULC classification, the repercussions of LULC evolution on water turbidity 
were analysed. The findings reveal significant LULC alterations over the span, including 
an increase in built-up areas (25.9 km²), plantations (9.63 km²), and bare lands (0.49 km²), 
alongside a decline in forests (35.9 km²). These changes correspond with elevated water 
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addressed. This study aims to fill these research 
gaps by applying the NDTI in a long-term 
analysis of LULC changes and their impacts 
on water turbidity at Kelalong Dam, Sarawak, 
thus contributing novel insights into sustainable 
land and water resource management in rapidly 
developing regions. Despite the growing body of 
research, the long-term impact of LULC changes 
on water turbidity, particularly in biodiverse 
areas like Borneo, remains underexplored.

Recent studies emphasise the utility of 
remote sensing techniques in monitoring 
environmental changes, providing comprehensive 
spatial and temporal data that are invaluable for 
managing and mitigating the impacts on water 
bodies (Mahrad et al., 2020). The Normalised 
Difference Turbidity Index (NDTI), developed 
from remote sensing data, has been validated 
in various geographical contexts (Garg et al., 
2017; Ouni et al., 2019; Elhag et al., 2021), but 
its application in Malaysian ecosystems is not 
well-documented, marking a significant gap in 
local environmental studies.

The unrestrained population and demanding 
land use practices impact the water quality in 
water reservoirs (Hutchins et al., 2018). Turbidity 
is an important indicator of river water quality 
and hydrological conditions. As a measure of 
water transparency, turbidity is related to total 
suspended sediment concentration and other 
impurities in the water (Robert et al., 2016; 
Zheng et al., 2018). It is usually monitored 
by on-site measurements and hydrological 
station observations, which are typically time-
consuming and limited to discrete stations. With 
wide coverage and low-cost advantages, remote 
sensing provides an alternative method for 
monitoring turbidity on different temporal and 
spatial scales (Song et al., 2014). 

Integrating in-situ measurements and remote 
sensing data allows for consistent quantification 
of turbidity changes, especially in the remote and 
wide study area. Although there have been many 
studies on the impact of logging and alternative 
land use on the yield of suspended sediments 
(Douglas, 1999; Walsh et al., 2011). However, 
there has been a gap in evaluating the impact of 

land use on water quality for a longer time over 
longer time scales. This study determines the 
impact of land use change on turbidity between 
2007 and 2021. Besides that, there are still fewer 
studies in Malaysia that applied the Normalised 
Difference Turbidity Index (NDTI), which 
is one remote sensing index for studying one 
water quality parameter. Toriman et al. (2018), 
Al Mamun et al. (2016), and Wan et al. (2015) 
applied GIS analysis to assess the impact of land 
use on water quality, flash floods, and water 
quality. This study wants to explore the effect 
of land-use change on NDTI between 2007 and 
2021 at Kelalong Dam, Bintulu. 

The research results are important because 
it studies the impact of land-use changes on 
sedimentation and turbidity. The study site 
Kelalong Dam was built to supply water to 
the Bintulu population. It is very important 
to monitor turbidity every year. This paper 
explores the hypothesis that the impact of 
land use increases with turbidity disturbances 
to resolve such research gaps. This study is 
important because it can guide the responsible 
parties to take appropriate action to maintain the 
quality of water that will be supplied. 

Materials and Methods 
Kelalong Dam is a water supply dam for the 
Bintulu District located about 20 km northeast 
of Bintulu. The total reservoir storage capacity 
is 33,700 ML. The location of Kelalong Dam is 
Bintulu, Sarawak, Malaysia (Figure 1).

This study uses data from Landsat 5 TM 
and 8 OLI TIRS satellites as shown in Table 1 
to achieve the objective of the study. Landsat 5 
TM and 8 OLI TIRS data was downloaded from 
the USGS website. The Landsat used is captured 
during the southwest monsoon season (April 
until September), which is mainly dry and has 
a smaller amount of rain than the northeast 
monsoon season (Kemarau & Oliver, 2021).

In long-term environmental change studies, 
satellite images from two distinct time points 
can provide valuable insights into land use and 
land cover (LULC) changes and their impacts 
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on water turbidity. This approach is predicated 
on several methodological considerations 
and supported by previous remote sensing 
and environmental monitoring research. The 
selection of two-time points, 2007 and 2021, 
was strategically chosen to capture significant 
LULC changes over an extended period. This 
allows for analysing gradual changes rather than 
short-term variations, providing a clearer picture 
of sustained trends and impacts (Jensen, 2015). 
Long-term studies often use such temporal 
endpoints to identify and analyse change 
(Lambin & Meyfroidt, 2011). 

Landsat 5 TM and Landsat 8 OLI/TIRS 
are motivated by their availability and the 
continuity of the data they provide, which is 
crucial for long-term environmental monitoring 
(Wulder et al., 2019). Both sensors are well-
calibrated and have been extensively used 
for environmental monitoring, offering a 
consistent basis for comparative analysis over 

time (Roy et al., 2014). This methodology is 
common in environmental studies where two-
time points (a baseline and a follow-up) are 
used to understand the extent and impact of 
environmental changes. By analysing data from 
these two points, we can directly assess the 
impact of interventions and changes in land use 
policies or natural environmental changes over 
the study period (Kennedy et al., 2014). The use 
of Normalised Difference Indices (like NDTI) 
derived from these images is a proven method 
for assessing specific environmental parameters 
such as turbidity in water bodies. These indices 
are sensitive enough to detect significant 
environmental changes over time and have been 
validated in numerous studies (Pettorelli et al., 
2014). The provider has done the geometric 
correction for both data. The detailed flow of the 
method will be discussed in the next sentence 
(Figure 2).

Figure 1: Location of Kelalong Dam, Bintulu, Sarawak

Table 1: Information on the dataset

Sensor Data Level Data Acquisition Cloud Cover
Landsat 5 Thematic Mapper (TM) Level 1 25 May 2007 Less than 10%

Landsat 8 Operational Land Imager (OLI) 
and Thermal Infrared Sensor (TIRS) Level 1 21 August 2020 Less than 10%
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Figure 2 shows the flow step required to 
achieve the objective of the study. The first data 
needed, Landsat 2007, and 2021 preprocessing 
were geometric, radiometric, and atmospheric 
correction. The next data applied needs to 
generate NDTI to gain the parameter water 
quality turbidity and generate the Normalised 
Difference Vegetation Index (NDVI), 
Normalised Difference Bare Index (NDBI), and 
Normalised Difference Water Index (Table 2), 
which was applied by Ricky and Oliver (2021) 
to generate land use maps 2007 and 2021.

The detailed method generates NDTI, 
NDBI, NDVI, and NDWI following the formula 
in Table 2. Table 3 shows the bands available in 
Landsat 5 TM applied in this study.

Table 4 shows the available wavelength 
Landsat 8 OLI and TIRS were applied to achieve 
the objective study. 

This study was classified into five different 
land-use categories: Built-up human, plantation, 
vegetation, bare land, and water bodies using the 
NDBI, NDWI, and NDWI index for the years 
2007 and 2020. 

Figure 2: Workflow steps towards achieving the study's objective

Table 2: Formulas for generating NDTI, NDVI, NDBI, and NDWI

Index Formula Source
NDTI (Red – Green) / (Red + Green) Elhag et al. (2019)
NDVI (Near-infrared – Red) / (Near-infrared + Red) Ding et al. (2014)
NDBI (Short infrared – Near-infrared) / (Short infrared – Near-infrared) Guha et al. (2018)
NDWI (Near-infrared – Short infrared) / (Near-infrared + Short infrared) Guha et al. (2020)

Table 3: Information of Landsat 5 TM

Landsat 4-5 TM Wavelength Detailed Wavelength (Micrometres) Resolution 
(Metres)

Band 1 Visible – Blue 0.43 – 0.45 30
Band 2 Visible – Green 0.45 – 0.61 30
Band 3 Visible – Red 0.53 – 0.59 30
Band 4 Near-infrared 0.64 – 0.67 30
Band 5 Short-wave infrared 1 0.85 – 0.88 30
Band 6 Thermal band 1.57 – 1.65 60
Band 7 Short-wave infrared 2 2.11 – 2.29 30
Band 8 Panchromatic 1.50 – 0.68 15
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The result found the mapped results at an 
accuracy of 92.6%, indicating that they can be 
used to fulfil the mapping objective reliably. The 
results of the accuracy assessment are shown in 
Table 5.

Results and Discussion
The map of land use contained five types of land 
use, namely water bodies, forests, plantations, 

built-up (housing, commercial, industrial, and 
transportation), and bare soil (land areas that are 
unprotected soil and barren areas influenced by 
humans) as shown in Figure 3 shows the land 
use map in 2007 and 2021. Based on Figure 3 
displays the change in the pattern of land use 
between 2007 and 2021. In 2007, Figure 3 
shows that almost all study areas covered forests 
transformed into plantations in 2021.

Table 4: Information for Landsat 8 OLI and TIRS

Landsat 8 OLI and 
TIRS Wavelength Detailed Wavelength (Micrometres) Resolution (Metres)

Band 1 Coastal aerosol 0.45 – 0.52 30
Band 2 Blue 0.52 – 0.60 30
Band 3 Green 0.63 – 0.69 30
Band 4 Red 0.76 – 0.90 30
Band 5 Near-infrared 1.55 – 1.75 30
Band 6 Short-wave infrared 10.40 – 12.50 60
Band 7 Short-wave infrared 2.08 – 2.35 30
Band 8 Panchromatic 0.50 – 0.68 15
Band 9 Cirrus 1.36 – 1.38 30
Band 10 Thermal infrared 1 10.6 – 11.19 100

Band 11 Thermal Thermal infrared 2 11.50 – 12.51 100

Table 5: Accuracy assessment

Indices Land Cover 2007 2020
User accuracy (%) Water body 97 97

Built-up 94 96
Plantation 95 99
Vegetation 97 98
Bare land

Producer accuracy (%) Water body 96 99
Built-up 100 97

Plantation
Vegetation 92 97
Bare land 99 99

Overall accuracy (%) 98 98
Kappa coefficient (%) 98 98
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The details of settling the change in land use 
area between 2007 and 2021 will be explained 
using Figure 4.

Figure 4 shows the land-use area in 2007. 
The vegetation area (forest) has the widest area 
of 42 km² followed by the air body area of 7.54 
km². The bare soil area is the second largest area 
of 3.21 km², and the third area is 3.069 km². 
However, in 2021, the built artificial area has 
a larger area of 28.9 km², second the plantation 

area of 12.70 km², and the air body area of 7.56 
km² in 2021. These results clearly show the land-
use change between the year 2007 and 2021 in 
study areas, which will be described in Figure 5.

Figure 5 shows the areas of the vegetation 
area experienced the largest decrease in 35.99 
km². The second is built-up human-developed 
land-use area increased by 25.89 km, plantations 
by 9.63 km, and bare land 0.49 km².

Figure 3: Land use map for 2007 and 2021

Figure 4: Land use area in 2007 and 2021
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Figure 6 shows the NDTI distribution map 
in 2007 and 2021. Looking at Figure 7, the value 
of NDTI between 2007 and 2021 increases for 
mean, maximum, and minimum values. The 

minimum of NDTI is a negative (-) 1 and the 
maximum value of NDTI is a positive (+) 1. The 
explanation of the classification of NDTI value 
is based on Table 6. 

Figure 6: NDTI distribution map for 2007 and 2021

Figure 5: Alterations in land use areas from 2007 to 2021

Table 6: NDTI value classification

NDTI Value Turbidity Level
-1 until 0 Clearwater/slightly turbidity

0 until 0.25 Fairly turbidity
0.25 until 0.50 Rather turbidity
0.50 until 0.75 Turbidity

0.75 until 1 Very turbidity
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Figure 6, which represents the NDTI 
distribution map in the years 2007 and 2021, 
found that the turbidity level of water in the study 
area is clearwater/slightly turbidity which has a 
value below 0. However, there is a maximum, 
mean, and minimum NDTI of value increase 
in the study area between 2007 and 2021. The 
value maximum, minimum, and mean of NDTI 
value increase are strongly influenced by the 
land-use change factor in the use area. These 
developed lands namely built-up, plantation and 
bare land, provide overflow to the air catchment 
area. Figure 7 illustrates the increase in the 
minimum, maximum, and mean value of NDTI 
between 2007 and 2021. 

Figure 7 shows the change in NDTI 
between 2007 and 2021. The study varied from 
0.02 for the NDTI of 2007 and 2021, 0.076 for 
the maximum value between 2007 and 2021, 
and 0.063 for the minimum value of NDTI. The 
increase in the value of NDTI is a factor of land-
use change from vegetation to developed areas, 
plantations, and bare land with a total of 35 
km². Natural growing areas are active as filters 
flowing during rain and air flowing to catchment 
areas related to man-built land uses, plantations 
and vacant land where any land surface is 

exposed during rain will provide rainwater 
runoff moving to the rainwater catchment area. 
This led to total deferred sediment that caused 
slight turbidity to water in the study area.

Based on Figure 8, the study found a major 
change in land use from agriculture and bare 
soil in the east of the study area. The change of 
land use in the east of the study areas indirectly 
caused the value of NDTI in the eastern area 
to be higher, which is 0.050 in the year 2021, 
compared to 2007 in the same area with an 
NDTI value below 0. This matter clearly shows 
the activity of land use change from forest to 
agricultural activities and bare land, giving the 
value of NDTI higher between the years 2007 
and 2021 because the exposure of the land 
(soil) surface during the rains causes surface 
adjustment activities that bring the eroded soil 
to the river during the rains.

It was found from Figure 9 that the land use 
type gives the mean value of NDTI. The results 
of the study of Figure 9 were obtained on the 
NDTI distribution map in 2021 by identifying 
the maximum value of NDTI obtained based 
on the type of land use close to the water body. 
For example, in the area of the black circle in 
Figure 8, which shows that the area is built, the 

Figure 7: Changes in NDTI values between 2007 and 2021
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mean value of NDTI is 0.038. This study found 
that the mean value of NDTI in areas close 
to empty land (bare soil) because of clearing 
activities has the highest NDTI which is 0.058, 
followed by built-up areas, third agricultural 
areas, and then the lowest mean value of NDTI 
in forest areas. Areas proximate to bare land 
have the highest average because those areas 

do not have vegetation covering the bare soil, 
which causes higher erosion rates during rain 
compared to built-up areas, agriculture, and 
forest areas. The clearing activities of land (bare 
soil) can lead to increased salinity, sediments, 
and the decomposition of organic matter in 
streams, leading to acidity problems in the 
catchment (Camara et al., 2019). The water 

Figure 8: Comparison of land use and turbidity rate distribution between 2007 and 2021
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bodies surrounding forest areas denote a -0.041 
value of NDTI because Nainar et al. (2017) 
highlighted the contributions of rainforests to 
protecting water quality, particularly turbidity 
by reducing water runoff activities during 
rain and decreasing erosion. The researchers 
believe that the water turbidity level would have 
increased had it not been for the monitoring of 
development around the Kelalong Dam.

This study found that land use changes 
in the Kelalong Dam area for 2007 and 2021 
directly affect air quality through the turbidity 
parameter represented by NDTI. Land use from 
forest areas to bare land, built, and plantation 
areas caused the value to change from -0.07 in 
2007 to -0.09 in 2021. Forest areas experienced 
a decline of 35.99 km² to built, plantation, and 
bare land areas, which explains the increased 

Figure 9: The mean value of NDTI is based on the proximity of each type of land use to water bodies

Figure 10: The effect of changes in land use aea on the mean NDTI value in 2007 and 2021
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value average NDTI between 2007 and 2021 
of 0.02. This explains the positive relationship 
between the increase in the use of built-up land 
and bare land with the mean value of NDTI 
and the relationship between the song and the 
decrease in the forest area with the mean value of 
NDTI. The results of this study have similarities 
with Camara et al. (2019), who explained 
that the increase in built-up (urban) areas, 
agriculture, and vacant land causes an increase 
in physical changes (turbidity) with a Spearman 
correlation value of 0.53 (urban parameters with 
physical water bodies) and 0.70 (parameter land 
used for agriculture with physical water bodies). 
Air quality monitoring is important because 
the deposition of dead vegetative matter and 
suspended sediments can cause a reduction 
in reservoir capacity (Bishwakarma & Støle, 
2008), thus contributing to a decrease in power 
generation capacity and an increased cost of 
freshwater treatment.

The transformation in land use observed 
between 2007 and 2021 at the Kelalong Dam 
area is profound, with significant shifts from 
forested regions to built-up, plantation, and 
bare lands. As shown in Figure 3, the forest area 
decreased dramatically by 35.99 km², which was 
largely converted into built-up areas (increased 
by 25.89 km²) and plantations (increased by 
9.63 km²). These changes are critical as they 
directly influence the hydrological and sediment 
dynamics of the region (Foley et al., 2005; 
Lambin et al., 2013). 

The Normalised Difference Turbidity Index 
(NDTI) maps for 2007 and 2021 (Figure 6) 
reveal an increasing trend in turbidity levels 
coinciding with land use changes. The NDTI 
values, classified from -1 (clear water) to 1 (very 
turbid), show a marked increase, particularly 
in areas where forest cover was replaced by 
anthropogenic land uses. This shift indicates 
increased runoff and sediment transport due to 
reduced vegetation cover, corroborating findings 
by Turner and Rabalais (2003) that link land 
use changes to water quality degradation. The 
conversion of forests to less permeable surfaces 
(e.g., urban and agricultural lands) enhances 

surface runoff, reducing the land’s natural 
ability to filter and retain water and sediments 
(Defries & Eshleman, 2004). This process was 
particularly evident in the eastern sectors of 
the study area, where intensive agricultural 
activities and bare soil exposure led to higher 
NDTI values in 2021 compared to 2007, as 
detailed in Figures 7 and 8.

These findings underscore the need 
for integrated land and water management 
strategies that consider the impact of land use 
on water bodies. The increased turbidity affects 
water quality and poses challenges for water 
treatment and biodiversity conservation (Postel 
& Richter, 2003). Monitoring and managing 
these changes is vital for sustainable water 
resource management, especially in regions 
facing rapid developmental pressures. This 
study contributes to the scientific understanding 
of the spatial dynamics of turbidity in response 
to extensive land use changes. By employing 
remote sensing techniques over a 14-year 
interval, the study highlights the long-term 
impacts of anthropogenic activities on water 
quality. Moreover, it utilises the NDTI, an 
innovative approach in the Malaysian context, 
providing a replicable methodology for similar 
ecological assessments in other regions (Okin et 
al., 2004).

Conclusions
This study has effectively demonstrated the 
significant relationship between land use and 
land cover (LULC) changes and the increased 
water turbidity at Kelalong Dam from 2007 to 
2021. Employing remote sensing data and the 
Normalised Difference Turbidity Index (NDTI), 
our findings substantiate that transformations 
from forested areas to built-up, plantation and 
bare lands have led to marked increases in 
turbidity. This correlation highlights the pressing 
need for proactive environmental management 
practices.

The transition observed underscores the 
urgent requirement for integrated land and 
water management strategies to mitigate the 
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environmental impacts of urban and agricultural 
expansion. Effective monitoring and sustainable 
land management policies are imperative to 
safeguard water quality. Local authorities and 
stakeholders should prioritise establishing 
protective measures around sensitive water 
catchments to prevent further degradation.

Furthermore, this research paves the way 
for future studies to adopt similar methodologies 
in different geographical contexts, exploring 
adaptive management strategies that balance 
developmental needs with environmental 
preservation. Ensuring the sustainability of water 
resources in the face of developmental pressures 
is crucial for environmental health and the 
socio-economic well-being of the community 
relying on these water bodies. In essence, the 
insights gained from this study advocate for 
a holistic approach to land use planning and 
water quality management, reinforcing the need 
for thoughtful consideration of environmental 
impacts in developmental policies and practices.
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