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Introduction 
Researchers have been investigating 
Hamiltonian systems with discrete phase space 
for many years. Discretisation has been used for 
a variety of purposes since Rannou’s pioneering 
work (Rannou, 1974), including simulating 
quantum effects in classical systems, fulfilling 
invertibility in a delicate numerical experiment, 
arithmetically illustrating Hamiltonian chaos, 
and researching various phenomena related to 
numerical orbits. 

The Chirikov-Taylor standard map has 
received much attention in the cylinder phase 
space (Chirikov & Shepelyansky, 2008).

Definition 1: (Chirikov-Taylor Standard Map) 
The Chirikov-Taylor standard map is defined by 

Γ: T2 → T2

such that 
Pn+1 = Pn + k sin qn,

                         qn+1 = qn + Pn+1,                       (1)

where, T2 = (ℝ⁄ℤ)2 is the torus, k is the 
perturbation parameter with a value of 0 < k < 1,

Pn represents momentum and qn is the angle 
formed by the kicked rotor. 

In our scenario, we wish to create a discrete 
version of the standard map (Chirikov & 
Shepelyansky, 2008) in Definition 1. We want to 
investigate the Chirikov-Taylor standard map’s 
discrete version and how the points’ dynamics 
behave in discrete space. The dynamics of the 
discrete space differ from the dynamics of the 
cylinder phase space. However, its discrete 
version features some similarities, especially 
in the construction of the island chains, as 
illustrated in Figure 1. This paper provides a 
basic overview of rotations in 2-dimensional 
and 3-dimensional discrete spaces.

Definition 2: (Discrete Chirikov-Taylor 
Standard Map) 
On a doubly periodic square lattice (ℤ⁄Nℤ)2, the 
discrete form of the Chirikov-Taylor standard 
map in (1) is defined as follows: 
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 γ : (ℤ⁄Nℤ)2 → (ℤ⁄Nℤ)2,  such that 
{yt + 1 ≡ yt + V(xt) (mod N), where (2) xt+1 ≡ xt 
+ yt+1 (mod N),

  
  

(3) 

is the discrete map’s perturbation function 
and N is a huge fixed integer representing the 
lattice’s size. 

ℤhang and Vivaldi (1998), constructed the 
equation in (2). 

We constructed the discrete phase space 
shown in Figure 1 from (2). In Figure 1, island 
chains of odd order are filled with periodic 
points. Then, on one of the islands, we construct 
a local mapping to investigate the behaviour of 
the points. 

Definition 3: (Local Mapping) 
The local mapping on one of the islands is given 
by (Zhang & Vivaldi, 1998), 
                                       φ : ℤ2 → ℤ2,                   where 

                                                                      
 with       (4) 
                           and 

+1, if X ≥ 0,
       sign (X) = {

−1, if X < 0.

Here, α and β are the non-negative parameters.  
Figures 2 (A) and 2 (B) depict the orbit of the 
map specified in (4). 

The behaviour of the discrete points φ 
defined in (4) is thoroughly studied in the 
research on “Nonlinear rotations on a lattice” by 

Figure 1: Figure shows the phase diagram in a doubly periodic lattice. There are the discrete orbits of the map 
(2) with N = 350, and V(x) given by (3)

                           A: The orbit of φ for α = 7, β = 1.                   B: The orbit of φ for α = 13, β = 2.

Figure 2: Elliptic-type orbits of the local mapping defined in (4)
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Alwani and Vivaldi (2018). They have proved 
the following theorem:

Theorem 1 

Let φ be the local mapping defined in Definition 
3 and let 

The period of the orbit φ does not exceed α̂. 
Furthermore, for any sufficiently large initial 
condition values, all orbits have period α̂. They 
have also proved that if α̂ is even (or divisible 
by 4), all orbits will ultimately approach infinity 
and escape in both directions. 

In this paper, we will look at the behaviour 
of the orbit of the discrete map specified in 
(4), which will be defined in a 3-dimensional 
discrete space, ℤ3. 3D modelling produces 
a 3-dimensional object using 3-dimensional 
modelling software (Ghani et al., 2019). 

This approach is used in multimedia and 
animation to model a figure to animate and in 
film studies. Characters, whether in novels, 
films, or games, are among the most crucial 
aspects to remember when creating media that 
people can relate to (Bailey, 2013). 3D is often 
used in medicine to pinpoint the root of an issue 
(Beane, 2012). Architects utilise 3D software in 
conjunction with CAD programmes to design 
models and test and visualise those models to see 
what structures might look like in photos before 
they are built (Beane, 2012). The usage of 3D 
imagination is widespread, and it is continually 
evolving. The 3D hypothetical is utilised in the 
animation, creative multimedia, engineering, 
and medical industries (Luan et al., 2008). 

From our perspective, two perpendicular 
axes exist in 2-dimensional space: The horizontal 
x-axis and the vertical y-axis. The z-axis, which 
is perpendicular to both the x and y-axes, can be 
added as a third dimension. This is referred to as 
the 3-dimensional space, which reflects the three 
dimensions that we experience in everyday life. 

The purpose of visualising in 3-dimensional 
space is to aid in comprehending and studying 
specific behaviours and difficulties. Dynamical 
systems may be found in ecology, electronics, 

non-linear mechanics, fluid dynamics, 
mathematics, economics, and other fields 
(Haramburu & Delrieux, 2006). Most of the 
time, these systems cannot be solved in closed 
form. As a result, they can only be completely 
comprehended using graphical methods in 
3-dimensional space. 

Different ways of acquiring, processing, and 
visualising  3D  information  from  photographs
have been investigated, mostly for distant 
purposes. The key benefits of image-based 
modelling over laser scanners are that the 
sensors are typically less costly and portable and 
that 3D information may be retrieved properly 
regardless of the size of the item (Remondino 
& El-Hakim, 2006). In addition to the 
demonstration of principles, we are inspired by 
the magnificent 3-dimensional architectures of 
odd chaotic attractors (Lucas & Sander, 2022). 
This describes how 3D printing can create 
genuine physical models of such dynamical 
systems in practice.

In this topic, we are interested in studying 
the structure of the discrete map defined in 
Definition 2 from a 2-dimensional map into 
a 3-dimensional map. Alwani and Vivaldi 
(2018) have reduced the 2-dimensional into 
a 1-dimensional map by using the Poincaré 
surface of the section. However, in our case, we 
consider the 2-dimensional map to be viewed in 
the 3-dimensional map to observe the different 
structures of the 2-dimensional map that are 
periodic in the 3-dimensional map. What are 
the possible conditions of the z-axis so that the 
rotations are closed and complete its orbit? 

This 3-dimensional map is then reduced 
to the 2-dimensional map by the principal 
component analysis (PCA) method to compare 
its 2-dimensional structure with the original 2 
dimensions. The method of dimension reduction 
is discussed in the next section. Most equations 
defined in z-axis are not periodic, which means 
that the orbits of the map are not closed.

In this paper, we will consider two 
cases. Case 1 is about the modification of the 
2-dimensional discrete Chirikov-Taylor map 
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defined in (4) into the 3-dimensional version 
and Case 2 is about the special case obtained 
from the modification of the 2-dimensional to 
3-dimensional map (“twisted” plane). In these 
two 3-dimensional cases, we want to reduce 
the dimension using PCA and investigate their 
orbits in the 2-dimensional space. 

Principal Component Analysis 
This paper will consider the principal 
component analysis (PCA). PCA is commonly 
used to decrease the dimensionality of a 
set of 3-dimensional data to 2-dimensional 
coordinates. PCA has been used effectively on 
movement data as a feature extractor as well as 
a data-driven filter (Daffertshofer et al., 2004). 
Its significance for the (clinical) research of 
human movement sciences (e.g., diagnostics 
and intervention assessment) is obvious but 
mostly unexplored. PCA aims to find the most 
relevant basis for re-expressing a given data set 
(Kurita, 2019). 

This new foundation is designed to expose 
latent structures in the data set and filter out noise. 
Dimensionality reduction, data compression, 
feature extraction, and data visualisation are 
only examples of uses. 

The main advantages of PCA are its 
low noise sensitivity, lower capacity and 
memory needs, and enhanced efficiency due 
to the smaller dimensions of the processes 
(Karamizadeh et al., 2013). Other advantages 
of PCA are lack of data redundancy due to 
orthogonal components (Asadi et al., 2010), 
reduced complexity of picture grouping, smaller 
database representation since only the trainee 
pictures are retained on a reduced basis in the 
form of their projections, and noise reduction 
since the maximum variation basis is used and 
hence tiny fluctuations in the background are 
disregarded automatically. 

PCA is also a statistical approach for 
detecting patterns in high-dimensional data 
and representing data with fewer variables 
(or dimensions) while maintaining as much 
variability as feasible. In order to reduce the 
dimensionality of a set of 3D coordinates into 

2D coordinates using PCA, a few steps must 
be computed which include centring the data, 
computing the covariance matrix, computing the 
eigenvectors and eigenvalues of the covariance 
matrix, projecting the data onto the principal 
components, and normalising the data. The 
generated 2D coordinates will retain as much 
variety as feasible from the original 3D data. 
This can be beneficial for data visualisation 
activities requiring lower-dimensional data 
representations. 

We perform the PCA in this study using 
Google Colaboratory (Google Colab). Through 
a Jupyter Notebook interface, it is intended to 
facilitate data analysis, machine learning, deep 
learning, and other data-related activities. A few 
steps need to be completed to investigate our 
PCA result. We extract the list of orbits from 
Maple software and convert them into points. 
Then, we apply the Google Colab to run and 
execute the PCA since we want to reduce the 
dimension of the map through PCA. Through 
PCA, we can preserve distance and variation 
between the data points. In this case, after 
reducing the 3-dimensional case, we want to 
compare whether the reduced PCA map is the 
same as the 2-dimensional map defined in (4). 

The reduction of 3D to 2D is done through 
the process which is shown in the following 
flow chart in Figure 3. 

The Modification of 2-dimensional Discrete 
Space Defined in (4) to 3-dimensional Discrete 
Space
We are interested in studying the dynamics 
of our original 2-dimensional map defined in 
(4) when viewed in a 3-dimensional map. Is it 
possible to attain the periodicity of the orbit of 
φ defined in 3-dimensional? We consider cases 
where the periodicity of the orbit is sustained. 
From the original 2-dimensional map defined 
in (4), we construct the 3-dimensional map by 
adding and modifying the z-axis. What happens 
to the XY-plane of the map defined in (4) if it 
is adjusted by “lifting” the XY-plane by 45° 
from the horizontal plane? Thus, we have the 
following: 
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ψ: ℤ3 → ℤ3,

  (5) 

 

From (5), we let (X0, Y0, Z0) ∈ ℤ be 
the initial condition and the iterations,  
(X1, Y1, Z1) … (Xn, Yn, Zn) under the mapping of 
ψ be the points of the orbit of the map defined 
in (5). Some observations on the orbit of ψ in 
3-dimensional space are shown in Figures 4, 5, 
and 6.

In Figure 6, one can see that the YZ-plane 
is on an angle of 45° from the horizontal axis. 
We plot the above graph (Figure 6) in the 
2-dimensional map and one has that, 

Figure 4: Figure shows the orbit of ψ from 
Y-orientation

Figure 3: Flow chart of the reduction of 3D to 2D

where and
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We have the following: 

Lemma 1: Let ψ be the 3-dimensional map 
defined in (5) and let (yn, zn) ∈ ℤ and (y0, z0) ∈ ℤ 
be two points in the orbit of the YZ-plane where 
y, z ∈ ℤ. Thus, from the projection on the X − 
axis, the angle of the “tilted” plane is given by 

Proof. Let (Yn, Zn) and (Yn+1, Zn+1) be two points 
in the orbit defined in (5). From equation Yn+1 
and Zn+1 in (5), we have the following,  

This implies that the tan−1(1) = 45°. Thus,                  
θ = 45°.   

In (5), one can see that the equation for Yn 
and Zn have the same form. The only difference 
between Yn+1 and Zn+1 is the initial coordinate 
(Y0, Z0). We let Y0 ≠ Z0, this means that Yn+1 ≠ 
Zn+1. For α = 7 and β = 1, we have the following 
figure: 

Figure 7: Figure shows the 2-dimensional map of ψ 
in the YZ-plane

Figure 5: Figure shows the orbit of ψ from 
Z-orientation

Figure 6: Figure shows the side view of the YZ-plane 
(or view from the orientation of the x-axis)

Figure 8: Figure shows that the orbit of ψ on the 
XY-plane for α = 7, β = 1.  The trajectory of the 

orbits revolves around the centre (a single point) α̂ 
times

 By comparing the orbit of the discrete 
map ψ on the XZ-plane defined in (4), and the 
3-dimensional map ψ defined on the XZ-plane, 
one can see that the orbits of the map in (4) look 
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similar to the orbits of ψ in (5) with different 
orientation as shown in Figure 8. From Figures 
4, 5, and 6, we have plotted the graph to see how 
the orbits of ψ formed in 3-dimensional space.  

                                      
(6)

 
By equalising the equations Yn and Zn, we 

reduce the map defined in (5) into 2-dimensional 
space. Thus, by letting α = 7, β = 1, we obtain the 
following diagram.

Figure 9: Figure shows the 3-dimensional orbit of ψ

 From (5), the orbit of ψ formed a “tilted” 
plane of X and Y in the 3-dimensional space. The 
equations of Yn and Zn of the mapping 

ψ: ℤ3 → ℤ3, 

are quite similar (which gives a value of a 
constant). Specifically, if the initial condition 
(X0, Y0, Z0) where Y0 ≠ Z0, then for any values of  
(X0, Y0, Z0) ∈ ℤ3, the next iteration of the point, 
say Y1 and Z1, they will decrease by a single 
point. 

 Therefore, if Y0 = Z0, this means that the 
equations of Yn and Zn in the orbit of ψ will be 
the same. Thus, one can define the following:

Figure 10: The figure shows the orbit of ψ on the 
XY-plane for α = 7, β = 1, from the initial condition 

of Y0 = Z0

Figure 11: Figure shows the diagram A: PCA visualisation of ψ on the XY-plane and the orbit of ψ from 
Y-orientation for α = 7, β  = 1

 Next, we want to consider the principal 
component analysis (PCA) for this case to 
compare whether the result that we will get for 
XY-plane is the same as the periodic result that 
we got in (5). After completing the PCA process, 
we have the following visualisation. 

A: PCA visualisation of ψ B: The orbit of ψ
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From Figure 11, one can see that the orbit of 
ψ defined in (5) has the same form as the orbit of 
PCA visualisation. If we look at the periodicity 
of these two maps, the period of the orbit is the 
same which is 

This means that the orbit rotates around its 
centre point 7 times and closes its orbit (periodic) 
as we can view it in the above diagram in Figures 
10 (A) and 10 (B).

The Special Case (“twisted” plane) 
Again, for this special case, we construct the 
3-dimensional map by the same method as 
explained in Case 1. From (4), we define the 
mapping as follows: 

(7)

where   and

and

   
  

We observe that if we let ω be the map 
defined in (7) be the 3-dimensional map, and if

then, for some initial conditions (X0, Y0, Z0) ∈ 
ℤ3, the orbit of ω defined in (7) is periodic with 
period α̂ in the 3-dimensional lattice. We have 
the following diagram: 

 In Figure 12, the orbit of the map ω 
described in the equation of Z in (7) features 
the same trajectory as seen in Figure 2 (A) 
due to the orientation of the z-axis. The map is 
plotted on the XY-plane, and in this instance, the 
periodicity of the map ω in (7) can be checked. 

On the other hand, the map ω shows different 
orbit trajectories, as illustrated in Figures 12 and 
13. 

 In Figure 13, the original XY-plane on the 
original 2-dimensional map φ defined in (4) 
looks “twisted”.  

In Figure 14, one can see that the orbit of 
ω revolves around its centre (middle points 
intersection) α̂ = 5 times. The plane shown in 
Figures 12 and 13 however is not “twisted” if we 
view the 3-dimensional map (Figure 12) from 
above or the XY-plane. 

As a result, for some initial conditions, the 
orbits of the 3-dimensional map ω described 
in (7) are periodic. Case 2’s behaviour is very 
interesting to investigate. For some initial 
conditions, as demonstrated in the computational 

Figure 12: Figure shows the trajectory of the orbit of 
ψ defined in (7) for α = 5, β = 2

Figure 13: Figure shows the orbit of ψ which is 
plotted on the XY-plane
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Figure 14: Figure shows the orbit of ψ which is 
plotted on XY-plane

Figure 15: The figure shows PCA visualisation of ω 
on the XY-plane

findings in Figures 12 and 13, the period of 
the orbit of ω is periodic with period α̂. To be 
specific, for a start, we may choose any initial 
condition (X0, Y0, Z0) to begin with. After some 
iterations under ω, the orbit of ω may become 
periodic and non-periodic. For periodic cases 
(the orbits stop iterating), then there is not a 
problem. However, for the non-periodic case, we 
have to force stop the iteration and choose any 
orbit points in the iteration (Xn, Yn, Zn) except for 
the initial condition (X0, Y0, Z0). For example, we 
choose (X1, Y1, Z1) as the new initial condition. 
By iterating the orbit of ω using the new (X1, Y1, 
Z1), the orbit of ω becomes periodic. This result, 
however, needs to be further investigated for 
future research. 

Next, we want to reduce the dimension of 
the map ω into a 2-dimensional space. Again, 
we apply the PCA method to this case to reduce 
the dimensionality of these 3-dimensional 
coordinates to 2-dimensional coordinates. We 
want to transform high-dimensional data into 
a lower-dimensional space while retaining 
the data’s most relevant patterns or structures. 
After completing the PCA process using Google 
Colab, we obtained the following diagram. 

 By comparing the diagram in Figures 12 
and 14, there is a similarity in the structure of 
map ω viewed in XY-plane and with the reduced 
plot by using PCA. Originally the map defined 
in (4) is a complete rotation around the origin 
(0,0). Now both diagrams in Figures 12 and 14 

look “twisted”. For both figures, the periodicity 
of the maps is sustained in which the orbits 
rotate around their centre point α̂ times. Thus, 
we have the following conjecture.

Conjecture 1: Let α̂ =  and let 
ω be the 3-dimensional map defined in (7).  For 
some initial conditions (X0, Y0, Z0) ∈ ℤ, the orbit 
of ω periodic with period α̂. 

Conclusions 
Based on our findings in Case 1 and Case 2, 
we sustain the periodicity of the 2-dimensional 
map after the modification of the 2-dimensional 
map into a 3-dimensional map may result in the 
non-periodicity case. To support our claim, by 
modifying the 2-dimensional into 3-dimensional 
discrete space and then reducing it back using 
the PCA method, most main features of the 
rotation of both maps ψ and ω defined in (5) 
and (7) are still maintained, especially in the 
“twisted” case. The main result of this paper is 
to investigate the periodicity of the orbit of the 
2-dimensional discrete Chirikov-Taylor standard 
map defined in (4), which can be viewed in a 
3-dimensional case. Then, does the reduction 
from the 3-dimensional to 2-dimensional map 
result in a distinct structure between them? The 
dynamics in the 2-dimensional case could be a 
simple rotation around the origin. However, in 
the 3-dimensional case, it could be something 
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more interesting, as shown in Case 2. More 
investigation is needed in studying the behaviour 
of the orbit of ω as stated in Conjecture 1. 
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