
eISSN: 2672-7226
© Penerbit UMT

Journal of Sustainability Science and Management 
Volume 17 Number 4, April 2022: 57-69

VEGETATION INDICES OF ACACIA MANGIUM USING LANDSAT 8 
OPERATIONAL LAND IMAGER

AQILAH NABIHAH ANUAR1, ISMAIL JUSOH1* AND AFFENDI SUHAILI2 
1Faculty of Resource Science and Technology (FRST), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, 
Sarawak, Malaysia. 2Forest Operation Branch, Forest Department Sarawak, Wisma Sumber Alam, Petra Jaya, 93660 
Kuching, Sarawak, Malaysia.

*Corresponding author: jismail@unimas.my
Submitted final draft: 3 January 2022 	 Accepted: 21 January 2022

Introduction 
Satellite remote sensing such as Landsat has 
been reported to have the potential to overcome 
ground measurement limitations. Implementing 
remote sensing and geographic information 
system (GIS) in forestry has comprehensively 
allowed us to view a large forested area. Recent 
studies have shown that remotely sensed data 
have been broadly applied in monitoring and 
estimating biomass over a large area (Ji et al., 
2012; Dube et al., 2016; Zhang et al., 2019; 
Suárez et al., 2020). Landsat has also been widely 
used in obtaining aerial images on various types 
of forest cover (Foody et al., 2003; Lu et al., 
2004; Günlü et al., 2014). Landsat 8 Operational 
Land Imager (OLI) is the continuation and 

upgraded version of the previous Landsat 
(Landsat TM and Landsat ETM+) (Li et al., 
2014) that had been widely used in the study 
of biomass estimation (Dube & Mutangga, 
2015). The aerial images downloaded from the 
database in the form of spectral bands such as 
from Landsat 5 Thematic Mapper (TM) and 
Landsat 7 Enhanced Thematic Mapper Plus 
(ETM+) have long been reported in providing 
relevant information for studies regarding 
the estimation of biomass (Kajisa et al., 2009; 
Basuki et al., 2013). In a study by Lu et al. 
(2004) using Landsat TM spectral bands, a high 
correlation was discovered between the digital 
data with aboveground biomass, basal area, 
average stand height and average stand diameter 
of trees from the Brazilian Amazon Basin. Their 
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findings, however, stated that as the forest stand 
structure and associated canopy shadow differ 
from one forest type to another, the result cannot 
explain the overall variation of different kinds 
of forest.

Landsat 8 satellite imagery used the 
multispectral imaging system with 11 specific 
spectral channels. These channels are sensitive 
to a narrow radiation length, thus providing the 
image in various greyscales of resolution cells 
in multilayer images (Hlatshwayo et al., 2019). 
The spectral channels involved in vegetation 
studies are visible light spectrum (blue, green 
and red), near-infrared and short-wave infrared, 
band 2 to band 7. These spectral channels from 
Landsat 8 are summarized in Table 1 (U.S. 
Geological Survey, 2018).

Vegetation has a unique spectral signature 
that makes it distinguishable from all other land 
covers in the visible and near-infrared spectral 
regions because the vegetation foliage is a good 
absorber of visible light. The spectral radiation 
detected on vegetation is low in the blue and 
red regions from the visible light due to the 
absorption of green pigments (chlorophyll) 
found abundantly in the palisade cells of plant 
leaves (Gibson, 2000). The absorption occurred 
mainly for photosynthesis as the green pigments 
absorbed energy in the wavelength centred 
at 0.45 μm and 0.67 μm. In the near-infrared 
region of the electromagnetic spectrum, ranging 
between 0.7 μm to 1.3 μm, the plant leaves 
reflected at least 50% of the energy due to the 
irregularity arrangement of the mesophyll cells 
inside the leaf (Kumar, 2005). Meanwhile, for 

bare soil, the spectral reflectance signature 
depends on the soil composition. In most cases, 
bare soil reflected the highest radiation. The 
image viewed for the area with bare soil appears 
to be brighter and yellowish-red (CRISP, 2020).

Satellite spectral signal has a limitation 
due to variation on the solar zenith angle as the 
satellite orbiting along the Earth’s latitudinal 
gradient (Rouse et al., 1974). Hence, there had 
been studies conducted that introduce vegetation 
index (VI) to improve the limitation from 
Landsat reflectance bands. Normal Differences 
Vegetation Index (NDVI) is a mathematical 
transformation using band 4 (red) and band 
5 (near-infrared) to eliminate the sun angle 
differences and minimizing the atmospheric 
effect. This index measures the differences in the 
ratio between the red reflectance band absorbed 
by the chlorophyll and the value of near-infrared 
detected after it passed through the mesophyll 
cell in the vegetation (Elvidge & Chen, 1995). It 
has been one of the most commonly and widely 
used VIs in many forestry and agriculture 
applications.

Enhance vegetation index (EVI) is another 
vegetation index that was used to correct the 
distortion from the reflected light caused by 
atmospheric influence and the ground under 
the vegetation canopy cover (Huete et al., 
2002). The application of EVI is a reliable 
alternative in displaying the spatial distribution 
of aboveground biomass in a species-level map 
(Pandey et al., 2019). The feature of this index is 
that it does not become saturated when viewing 
an area with a thick canopy from different types 

Table 1:  Spectral channel features from Landsat 8 OLI

Region on the Electromagnetic Spectrum Wavelength (µm) Spatial Resolution Band

Visible Light
Blue
Green
Red

0.45 - 0.51
0.53 - 0.59
0.64 - 0.67

30 m
30 m
30 m

B2
B3
B4

Near-infrared 0.85 - 0.88 30 m B5
Short-wave Infrared 
SWIR 1
SWIR 2

1.57 - 1.6
2.11 - 2.29

30 m
30 m

B6
B7

Source: U.S. Geological Survey (2018)
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of vegetation as this index remains sensitive. 
Other vegetation indices, such as modified 
soil adjusted vegetation index (MSAVI) were 
proven to be helpful in biomass estimation 
of study by lessening the effect from the light 
condition, exposed soil or terrain slope effect 
and orientation (López-Serrano et al., 2016). 
Meanwhile, normalized difference band 4 
and band 3 Index (ND43) detect green colour 
changes in vegetation like NDVI (Wanjura & 
Hartfield, 1987). The combination of band 3 
green and band 4 red into this vegetation index 
showed relatively notable changes in terms of 
the greenness of the vegetation canopy.

Currently, there is little information 
available on the Acacia mangium using Landsat 
8 despite the popularity of A. mangium being 
used as planting material in reforestation. 
Acacia mangium is successfully and the most 
extensively planted species for forest plantation 
in Sarawak, Malaysia (Wong et al., 2014; 
Jusoh et al., 2017; Adam & Jusoh, 2018). Thus, 

monitoring distribution and area coverage of A. 
mangium plantation has become crucial. The 
current paper determines the spectral reflectance 
bands and vegetation indices capable of 
distinguishing A. mangium canopy from other 
land covers. 

Materials and Methods
Study Area 
The study site is located in Bintulu, Sarawak, 
Malaysia, approximately 60 km from Bintulu 
town. The coordinates of the study area are N 
3º 19’ 56.81”, E 113º 26’ 37.72”. The total size 
of planted A. mangium area was approximately 
5,000 ha in 2016. The plantation is owned by 
Daiken Sarawak Sdn. Bhd. The plantation 
had various stand ages from four to 12 that 
dominated the study area when the study was 
conducted. The planting of A. mangium was 
conducted starting from 2002 and Figure 1 
shows the progress of the plantation as of 2015. 

Figure 1: Acacia mangium plantation area as of 2015
(Adapted with permission from Daiken Sarawak Sdn. Bhd.)
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The colour illustrates the year of the A. mangium 
planted while the numbers represent the number 
of the planting blocks on the area.

Ground Truthing
A ground-truthing was conducted along with 
the establishment of sampling plots for growth 
and biomass study between 8th and 10th March 
2016. During ground-truthing locations of 
different A. mangium stand ages using Global 
Positioning System (GPS) were recorded. We 
also marked the locations of some streams, 
ponds, undeveloped areas and harvested areas.

Satellite Image Acquisition
One full scene of Landsat 8 of the study area 
located at N 3º 19’ 56.81”, E 113º 26’ 37.72” 
with path 119 and row 58 from the World 
Reference System 2 (WRS2) was used for 
this study. Figure 2 shows the Landsat 8 OLI 
image of the area. The image (Scene ID # 
LC81190582016145LGN00) was acquired on 
24th May 2016. The image selection was based 
on the study area’s least cloud coverage (below 
20%). The spatial resolution of the imagery is 
30 x 30 m for the entire multispectral band. The 
metadata downloaded had all eleven spectral 
reflectance bands from the OLI sensor and the 
thermal sensor of Landsat 8 (Figure 2). 

Figure 2: A satellite image on the study site from Landsat 8 OLI. The region of interest (ROI) is within the 
red line. Acquisition date: May 24, 2016 (USGS, 2016)
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Image Pre-processing
A geometric correction was conducted on 
the downloaded image by setting the spatial 
reference coordinate reference system (CRS) of 
the study area fixed to WGS84 UTM Zone 49 
N. The radiometric correction was performed 
using Dark Object Subtraction (DOS) method, 
converting Landsat 8 OLI digital numbers (DN) 
(López-Serrano et al., 2016). The software used 
was Quantum GIS ver. 2.8.5. and ArcGIS 10.4 
(ESRI).

Band and Vegetation Indices (VIs) 
The variables of interest were satellite bands 
and the VIs. There are six bands which are 
band 2 to band 7, from individual Landsat 
data (Table 1). The selection of each band was 
based on literature and understanding the nature 
and sensitivity of each selected band with the 
vegetation (Hagner et al., 2007; Chander et 
al., 2009; Roy et al., 2014; Mishra et al., 2014; 
Roy et al., 2016; Hlatshwayo et al., 2019). 
The selection of VI was based on published 
ratios in the literature. A visual interpretation 
was conducted using VI’s filters to refine the 
identified area. The vegetation indices chosen 
were NDVI, EVI, MSAVI and ND43 and their 
equations are given in Table 2. 

Supervised Image Classification
Supervised classification was done to the 
Landsat image, which resulted in six general 
land cover classifications, namely (1) 
riparian buffer, (2) pond, (3) A. mangium, (4) 
undeveloped areas, (5) harvested areas and (6) 
road. The supervised classification was done 
using the maximum likelihood algorithm to 
maintain consistency and accuracy (Hlatshwayo 
et al., 2019). Spectral angle-mapping algorithm 
and image segmentation were used to select the 
area of interest for further analysis (Blaschke, 
2010; ESRI, 2019). Cloud masking was 
performed to remove atmospheric interference 
(cloud and shadow from the sun angle) on the 
plantation area (Congedo, 2018). Land covers 
on the targeted area were divided into several 
macro-classes (MC) and class identity (ID). 
Macro classes were represented by soil, targeted 
vegetation and non-targeted vegetation. Classes 
IDs were classified into six land covers. 

Results and Discussion
Land Cover Classification Using Spectral 
Bands
The land cover classification for the study 
area using satellite images is shown in Figure 
3. The classification map was generated using 
a supervised classification based on object-

Table 2:  Vegetation indices used in this study

Vegetation Index Equation Reference

Normal Differences 
Vegetation Index 
(NDVI)

Rouse et al., 
1974

Enhance Vegetation 
Index (EVI)

Liu & Huete, 
1995

Modified Soil 
Adjusted Vegetation 
Index (MSAVI)

Qi et al., 1994

Normalized 
Difference Band 4 
and Band 3 Index 
(ND43)

Wanjura & 
Hartfield, 1987
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based image analysis. The Landsat images were 
successfully classified into plantation cover map 
categorized by six classes: (1) riparian buffer, 
(2) pond, (3) A. mangium, (4) undeveloped 
areas, (5) bare soil (harvested area) and (6) 
access roads (Figure 3). The green area in the 
map shows the area of interest, where the area 
represents A. mangium canopy cover, view from 
Landsat 8 OLI. The visible A. mangium cover 
was essentially standing ages of four years and 
above. Recently planted A. mangium of fours 
years old and below cannot be detected. This is 
partly because the canopy cover is too small to 
distinguish between exposed or bare soil areas 
and partly the spectral response from band 7 of 
Landsat 8 is unable to discriminate A. mangium 

from other objects. The light green area shows 
the undeveloped areas. The areas comprised 
grasses, herbs, ferns, shrubs (usually refer to 
brush vegetation) and young or open canopy A. 
mangium stands. The sea-green coloured areas 
are riparian buffer. These areas are streams 
designated for environmental protection. The 
ponds are in blue colour. The area with brown 
colour shows the bare soil or exposed area 
following harvesting that had taken place. The 
yellow lines are the plantation access roads. 
Overall accuracy on the classification made 
was 82.7% with the Kappa hat coefficient of 
the agreement being 0.73. The composition of 
the study area which illustrated six land cover 
classes is presented in Table 3. 

Figure 3: Land cover map of the Acacia mangium plantation produced by supervised classification of 
Landsat 8 imagery
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The total area of the plantation determined 
from 55,722 total pixels was 5,003.7 ha (Table 
3). The area covered with A. mangium was 
approximately 30,703 pixels, representing 
2756.8 ha or 55.1% of the area. The rest of the 
area in the plantation was covered by streams, 
ponds, riparian and undeveloped zone (1,309.6 
ha), equivalent to 26.1%, bare soil with 12.7% 
and 6.1% made up of the harvested area and 
road and landing areas combined, respectively.

The classes were distinguished based on 
the differences in the spectral responses. Table 
4 shows the spectral response ranges of stream, 
pond, A. mangium cover, undeveloped and bare 
soil land cover classes. Every channel on the 
reflectance bands (band 2 – band 7) has a specific 
spectral response range. The spectral responses 
from bands 2 to 6 ranged from 0.461 to 1.600, so 
the six target land covers are not well separated. 
The six land covers: Stream, pond, A. mangium 

cover, undeveloped areas, harvested areas and 
roads are not distinguishable using band 2 to 
band 6.    

Band 7 was the best spectral parameter for 
separating between A. mangium canopy and other 
land covers. The spectral responses of stream, 
pond, A. mangium cover, undeveloped areas 
and bare soil, from band 7 were discontiguous, 
making the land covers distinct as shown in 
Figure 3. The spectral signature detected from 
vegetation was the product after electromagnetic 
energy interacting with the leaves, down to the 
level of its cellular structures (Gausman et al., 
1969). Interactions between electromagnetic 
energy, especially on the blue and red regions in 
visible light and chlorophyll a, b, β-carotene and 
other components inside the leaf pigment made 
the spectral signatures unique between different 
species of vegetation. 

Table 4: Spectral response ranges of stream, pond, Acacia mangium, undeveloped area, harvested area 
and bare roads obtained from spectral band 2 to band 7 Landsat 8 Operational Land Imager

Spectral 
Band

Spectral 
Response of 

Stream
(µm)

Spectral 
Response of 

Pond
(µm)

Spectral 
Response 
of Acacia 
mangium 
Canopy 

(µm)

Spectral 
Response of  
Undeveloped 

Area (µm)

Spectral 
Response of  
Harvested 
Area (µm)

Spectral 
Response of  

Road
(µm)

B2 (Blue) 0.461−0.629 0.461−0.629 0.461−0.467 0.463−0.465 0.467−0.482 0.45−0.475
B3 (Green) 0.544−0.556 0.542−0.560 0.544−0.555 0.547−0.555 0.551−0.575 0.540−0.571
B4 (Red) 0.645−0.650 0.640−0.658 0.644−0.648 0.645−0.646 0.640−0.670 0.649−0.667
B5 (NIR) 0.850−0.863 0.851−0.863 0.864−0.878 0.874−0.881 0.866−0.872 0.855−0.870
B6 (SWIR1) 1.581−1.591 1.575−1.586 1.580−1.591 1.585−1.591 1.598−1.600 1.590−1.600
B7 (SWIR2) 2.150−2.196 2.130−2.200 2.148−2.187 2.166–2.190 2.241−2.290 2.218−2.288

Table 3: Summary and percentage of the classified major land cover

Land Cover Class No. of Pixels Total Area (ha) Percentage (%)

Riparian buffer 1,821 163.9 3.3

Pond 219 19.7 0.4

Acacia  canopy cover 30,703 2,763.3 55.1

Undeveloped areas 12,503 1,114.0 22.4

Bare soil - harvested area 9,545 859.0 17.1

Access road 931 83.8 1.7

Total area of plantation 55,722 5,003.7 100.0
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Our study showed that band 7 was 
significantly effective in distinguishing different 
land cover types, even on areas covered in 
vegetation. Band 7 (short-wave infrared 2) is 
relatively sensitive to water content. A study on 
distinguishing the different species of vegetation 
based on the amount of water present within the 
spongy mesophyll tissue and cavities of the 
leaf from band 7 had shown a positive result 
(Gausman et al., 1969). As band 7 is sensitive 
to moisture content, equivalent water thickness 
(EWT) within the canopy layer could also 
explain why A. mangium was distinguishable 
compared to other vegetation species (Ceccato 
et al., 2001; Asif et al., 2017). 

Land Cover Classification Using Vegetation 
Indices
The use of vegetation indices could improve the 
spectral signatures in identifying targets than 
when using a single reflectance band. Adding 
vegetation indices in defining the boundaries 
for areas representing A. mangium canopy 
cover, bare soil and undeveloped zones are 
more significant as the boundaries become more 
visible and prominent. Our results showed that 
NDVI, EVI, MSAVI and ND43 could distinguish 
the specified land cover targets (Table 5). The 
Landsat 8 image classified into the land cover 
using four VIs (NDVI, EVI, MSAVI and ND43) 
is shown in Figure 4.

The land cover classification using VIs in 
the filter refines the boundary on A. mangium 
even more. This is due to the use of the 

green tone from the image. The pattern of the 
arrangement viewed from the image and texture 
produces the impression of a homogenous 
spectral signature of A. mangium canopy cover 
due to the morphological characteristic of A.  
mangium itself. Acacia mangium canopy is 
evergreen, covered with branchlets that hold the 
phyllodes in acutely triangle position (Sein & 
Mitlӧhmer, 2011).

The NDVI is widely used for vegetation 
studies because it is sensitive to green vegetation, 
even for vegetation at low coverage. The NDVI 
value ranges from −1 to 1, where a negative 
value indicates a non-vegetated area (Table 5). 
Figure 4 (a) shows that higher forest density was 
found at the southern portion of the plantation 
and the range of NDVI between 0.70 and 0.85. 
The higher the value, the darker the green colour 
showing dense A. mangium cover for the lower 
the value with brown and red shows less A. 
mangium cover. The yellow colour shows areas 
with shrubs, bushes and treelet (brush forest) and 
young A. mangium stands. The northern region 
shows a large tract with white colour, which are 
mixed areas of open, undeveloped was excluded 
from NDVI mapping because the vegetation of 
interest was not there.

The EVI was introduced by modifying 
the NDVI as it corrected the red band for 
atmospheric aerosol scattering using the blue 
band (Silleos, 2006). This VI is useful for 
enhancing sensitivity to a region with higher 
biomass and reducing atmospheric influence 
while improving vegetation monitoring through 

Table 5: Vegetation indices spectral range detected from Acacia mangium canopy cover, undeveloped zone 
and bare soil

Vegetation 
Index (VI)

Spectral Range 
of Stream

(µm)

Spectral 
Range of 

Pond
(µm)

Spectral 
Response 
of Acacia 
mangium 

Canopy  (µm)

Spectral 
Response of  
Undeveloped 

Area
(µm)

Spectral 
Response of  
Harvested 
Area (µm)

Spectral 
Response of  

Road
(µm)

NDVI 0.158−0.386 0.140−0.450 0.706−0.823 0.834−0.868 0.380−0.653 0.306−0.636

EVI 0.090−0.250 0.181-0.213 0.415−0.678 0.640−0.753 0.294−0.467 0.210−0.467

MSAVI -0.165−0.168 0.009−0.235 0.355−0.625 0.584−0.681 0.180−0.420 0.195−0.416

ND43 -0.530−0.006 -0.244−-0.162 0.034−0.061 -0.244−-0.162 0.040−0.180 0.017−0.207
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a de-coupling of canopy background signal 
(Huete et al., 2002). Figure 4 (b) shows the range 
of EVI between 0.41 and 0.66 and higher values 
indicate higher biomass, lower values show 
less biomass. Mapping using EVI (Figure 4 
(b)) shows the variation of biomass distribution 
within the plantation because it is more sensitive 
than NDVI. The darker the green colour, the 
higher the biomass. EVI can display spatial 
distribution in a species-level map (Pandey et 
al., 2019). 

The SAVI is able to minimize soil 
brightness, thus, minimizing the effect of 
soil background. In comparison, MSAVI was 
developed to enhance SAVI and correct the red 
and near-infrared (band 5) flux (Silleos, 2006) 
and as well as reducing the influence of bare 
soil in SAVI (Xue & Su, 2017). The result is to 
increase vegetation signal to soil noise ratio (Qi 
et al., 1994). This is done to minimize the effect 

of bare soil on the SAVI and this helps when 
applied to areas with a high level of exposed 
soil surface. As shown in Figure 4 (c), MSAVI 
refined the A. mangium area. Range of MSAVI 
was between 0.35 and 0.65. The higher the 
values, the denser the A. mangium cover while 
the lesser the values mean, the more open the 
canopy.

Figure 4 (d) shows the range of ND43 
between −0.69 and 0; the negative values (0 
or less) show less dense vegetation cover or A. 
mangium canopy open. An area with a positive 
value show dense or closed canopy A. mangium. 
This VI could redefine the road clearer even from 
the vegetation canopy. This index showed A. 
mangium tree density was scattered in the study 
area showing relatively less A. mangium density 
in the southern part, which was not shown in the 
NDVI map. The combination of band 3 (green) 
and band 4 (red) into this vegetation index 

Figure 4: Maps of vegetation indices extracted from Landsat 8 showing A. mangium plantation area 
(a) NDVI, (b) EVI, (c) MSAVI and (d) ND43
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showed relatively notable changes in terms of 
the greenness of the vegetation canopy, hence 
being able to distinguish the road even under 
thick canopy cover. 

Adding vegetation indices into this study 
area showed significant improvement in 
identifying the area with A mangium. Studies 
have shown that vegetation indices helped 
minimize the atmospheric effects and improved 
the relationship between Landsat data and 
aboveground biomass. According to Huete et 
al. (2002) each pixel fully belongs to a set of 
discretion and mutually exclusive classes. By 
imparting vegetation indices into the filtering 
stage, the redefining boundary of A. mangium 
was effectively conducted. Our study showed 
that the area with A. mangium was refined using 
the EVI filter down to its one-pixel size compared 
to the NDVI filter. Enhanced vegetation index 
(EVI) appeared to be more sensitive than NDVI 
and thus strictly assigns the pixels in discrete 
classes in the display (Lijun et al., 2008). NDVI 
tends to be homogenously saturated in an area 
with dense vegetation while EVI retained its 
sensitivity even under the heavily vegetated area 
(Huete et al., 2002). This study shows that the 
ND43 vegetation index helps redefine the road 
despite the area concealed behind the canopy 
cover of A. mangium.

Conclusion
Our study showed the capability of utilizing 
Landsat 8 OLI in detecting and determining the 
distribution of A. mangium trees of four years 
old and above. The most significant spectral 
signature detected for A. mangium is band 7 
(short-wave infrared 2). A land cover map can 
be produced based on this spectral signature 
using supervised classification techniques 
and estimated acreage of A. mangium can be 
estimated. The addition of vegetation indices 
improved the distinguishing capability of 
different land covers. Vegetation indices such 
as NDVI, EVI, MSAVI and ND43 distinguished 
areas with A. mangium canopy cover from areas 
with other land covers present in the plantation 
area. Hence, large-scale forest plantations 

can map and monitor their timber resources 
accordingly on a real-time basis with minimal 
ground operations, which are time-consuming 
and costly. Although this study demonstrates the 
utility of NDVI, EVI, MSAVI and index ND43 
on A. mangium canopy, additional research is 
needed to substantiate our findings at various 
plantation sites in Sarawak, Malaysia.
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